HIGH-FREQUENCY MONOPOLAR ELECTRICAL STIMULATION OF THE RAT CEREBRAL CORTEX

Neurosurgery ◽  
2007 ◽  
Vol 60 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Masahiro Oinuma ◽  
Kyouichi Suzuki ◽  
Takashi Honda ◽  
Masato Matsumoto ◽  
Tatsuya Sasaki ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


1998 ◽  
Vol 80 (6) ◽  
pp. 3373-3379 ◽  
Author(s):  
A. K. Moschovakis ◽  
Y. Dalezios ◽  
J. Petit ◽  
A. A. Grantyn

Moschovakis, A. K., Y. Dalezios, J. Petit, and A. A. Grantyn. New mechanism that accounts for position sensitivity of saccades evoked in response to stimulation of superior colliculus. J. Neurophysiol. 80: 3373–3379, 1998. Electrical stimulation of the feline superior colliculus (SC) is known to evoke saccades whose size depends on the site stimulated (the “characteristic vector” of evoked saccades) and the initial position of the eyes. Similar stimuli were recently shown to produce slow drifts that are presumably caused by relatively direct projections of the SC onto extraocular motoneurons. Both slow and fast evoked eye movements are similarly affected by the initial position of the eyes, despite their dissimilar metrics, kinematics, and anatomic substrates. We tested the hypothesis that the position sensitivity of evoked saccades is due to the superposition of largely position-invariant saccades and position-dependent slow drifts. We show that such a mechanism can account for the fact that the position sensitivity of evoked saccades increases together with the size of their characteristic vector. Consistent with it, the position sensitivity of saccades drops considerably when the contribution of slow drifts is minimal as, for example, when there is no overlap between evoked saccades and short-duration trains of high-frequency stimuli.


1985 ◽  
Vol 63 (8) ◽  
pp. 1007-1016 ◽  
Author(s):  
P. V. Sulakhe

Interactions of several divalent cations (Mn2+, Ca2+, Co2+, Sr2+, and Zn2+) with EGTA-inhibitable adenylate cyclase were investigated in washed membranes (particles) isolated from the gray matter of rat cerebral cortex. The EGTA-inhibitable (called sensitive) enzyme activity was assayed in the presence of Triton X-100 since this detergent caused a marked increase (up to 20-fold) in the enzyme activity. The effects of various divalent metals (all added as chloride salt) indicated the presence of two distinct sites called site I and site II. At low concentrations (less than micromolar) Mn2+, Co2+, and Ca2+ increased (up to 10-fold) the enzyme activity to the same extent and appeared to act via binding to site I (high affinity site). The rank order of affinity was Mn2+ ≥ Co2+ > Ca2+. Zn2+ showed the highest affinity and Sr2+ the lowest towards binding to site I; both these metals increased the enzyme activity to lesser extents than Mn2+, Co2+, or Ca2+. GTP was not required for the stimulation of this enzyme by low concentrations of Ca2+. The interaction of Mn2+ with site II (low affinity site) caused further increase in the enzyme activity, whereas Co2+, Ca2+, and Sr2+ were inhibitory at concentrations >10 μM. Isolated fraction contained loosely and tightly associated pools of calmodulin. Myelin basic protein, but not calcineurin, inhibited the EGTA-sensitive adenylate cyclase activity. The EGTA-insensitive enzyme activity was increased by norepinephrine by mechanisms that depended on GTP and was inhibited by Ca2+. The stimulation of the EGTA-insensitive enzyme modulated the Mg2+ requirement such that Mg2+ binding to the low affinity site (site II) apparently occurred with higher affinity. The likely significance of these results is discussed with regard to (i) the presence of two classes of adenylate cyclase in rat cerebral cortex gray matter and (ii) the regulation of their activities by calmodulin-requiring and GTP-requiring mechanisms.


Sign in / Sign up

Export Citation Format

Share Document