Algorithmic analysis of the BMAP/D/k system in discrete time

2003 ◽  
Vol 35 (4) ◽  
pp. 1131-1152 ◽  
Author(s):  
Attahiru Sule Alfa

We exploit the structural properties of the BMAP/D/k system to carry out its algorithmic analysis. Specifically, we use these properties to develop algorithms for studying the distributions of waiting times in discrete time and the busy period. One of the structural properties used results from considering the system as having customers assigned in a cyclic order—which does not change the waiting-time distribution—and then studying only one arbitrary server. The busy period is defined as the busy period of an arbitrary single server based on this cyclic assignment of customers to servers. Finally, we study the marginal distribution of the joint queue length and phase of customer arrival. The structural property used for studying the queue length is based on the observation of the system every interval that is the length of one customer service time.

2003 ◽  
Vol 35 (04) ◽  
pp. 1131-1152
Author(s):  
Attahiru Sule Alfa

We exploit the structural properties of the BMAP/D/k system to carry out its algorithmic analysis. Specifically, we use these properties to develop algorithms for studying the distributions of waiting times in discrete time and the busy period. One of the structural properties used results from considering the system as having customers assigned in a cyclic order—which does not change the waiting-time distribution—and then studying only one arbitrary server. The busy period is defined as the busy period of an arbitrary single server based on this cyclic assignment of customers to servers. Finally, we study the marginal distribution of the joint queue length and phase of customer arrival. The structural property used for studying the queue length is based on the observation of the system every interval that is the length of one customer service time.


1987 ◽  
Vol 24 (2) ◽  
pp. 540-546 ◽  
Author(s):  
J. P. C. Blanc

Numerical data are presented concerning the mean and the standard deviation of the waiting-time distribution for multiserver systems with queues in parallel, in which customers choose one of the shortest queues upon arrival. Moreover, a new numerical method is outlined for calculating state probabilities and moments of queue-length distributions. This method is based on power series expansions and recursion. It is applicable to many systems with more than one waiting line.


1962 ◽  
Vol 2 (4) ◽  
pp. 499-507 ◽  
Author(s):  
G. F. Yeo

SummaryThis paper considers a generalisation of the queueing system M/G/I, where customers arriving at empty and non-empty queues have different service time distributions. The characteristic function (c.f.) of the stationary waiting time distribution and the probability generating function (p.g.f.) of the queue size are obtained. The busy period distribution is found; the results are generalised to an Erlangian inter-arrival distribution; the time-dependent problem is considered, and finally a special case of server absenteeism is discussed.


1991 ◽  
Vol 28 (02) ◽  
pp. 433-445 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


1969 ◽  
Vol 6 (1) ◽  
pp. 154-161 ◽  
Author(s):  
E.G. Enns

In the study of the busy period for a single server queueing system, three variables that have been investigated individually or at most in pairs are:1.The duration of the busy period.2.The number of customers served during the busy period.3.The maximum number of customers in the queue during the busy period.


1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.


2009 ◽  
Vol 2009 ◽  
pp. 1-18
Author(s):  
Md. Mostafizur Rahman ◽  
Attahiru Sule Alfa

A class of discrete time GI/D/ksystems is considered for which the interarrival times have finite support and customers are served in first-in first-out (FIFO) order. The system is formulated as a single server queue with new general independent interarrival times and constant service duration by assuming cyclic assignment of customers to the identical servers. Then the queue length is set up as a quasi-birth-death (QBD) type Markov chain. It is shown that this transformed GI/D/1 system has special structures which make the computation of the matrixRsimple and efficient, thereby reducing the number of multiplications in each iteration significantly. As a result we were able to keep the computation time very low. Moreover, use of the resulting structural properties makes the computation of the distribution of queue length of the transformed system efficient. The computation of the distribution of waiting time is also shown to be simple by exploiting the special structures.


2006 ◽  
Vol 2006 ◽  
pp. 1-10
Author(s):  
Fumio Ishizaki ◽  
Naoto Miyoshi

In the previous work, the authors have considered a discrete-time queueing system and they have established that, under some assumptions, the stationary queue length distribution for the system with capacity K1 is completely expressed in terms of the stationary distribution for the system with capacity K0 (>K1). In this paper, we study a sample-path version of this problem in more general setting, where neither stationarity nor ergodicity is assumed. We establish that, under some assumptions, the empirical queue length distribution (along through a sample path) for the system with capacity K1 is completely expressed only in terms of the quantities concerning the corresponding system with capacity K0 (>K1). Further, we consider a probabilistic setting where the assumptions are satisfied with probability one, and under the probabilistic setting, we obtain a stochastic version of our main result. The stochastic version is considered as a generalization of the author's previous result, because the probabilistic assumptions are less restrictive.


2019 ◽  
Vol 53 (2) ◽  
pp. 367-387
Author(s):  
Shaojun Lan ◽  
Yinghui Tang

This paper deals with a single-server discrete-time Geo/G/1 queueing model with Bernoulli feedback and N-policy where the server leaves for modified multiple vacations once the system becomes empty. Applying the law of probability decomposition, the renewal theory and the probability generating function technique, we explicitly derive the transient queue length distribution as well as the recursive expressions of the steady-state queue length distribution. Especially, some corresponding results under special cases are directly obtained. Furthermore, some numerical results are provided for illustrative purposes. Finally, a cost optimization problem is numerically analyzed under a given cost structure.


1974 ◽  
Vol 11 (04) ◽  
pp. 785-796 ◽  
Author(s):  
Oliver S. Yu

This paper establishes stochastic bounds for the phasal departure times of a heterogeneous-server queue with a recurrent input and Erlang service times. The multi-server queue is bounded by a simple GI/E/1 queue. When the shape parameters of the Erlang service-time distributions of different servers are the same, these relations yield two-sided bounds for customer waiting times and the queue length, which can in turn be used with known results for single-server queues to obtain characterizations of steady-state distributions and heavy-traffic approximations.


Sign in / Sign up

Export Citation Format

Share Document