scholarly journals The FERM protein Epb4.1l5 is required for organization of the neural plate and for the epithelial-mesenchymal transition at the primitive streak of the mouse embryo

Development ◽  
2007 ◽  
Vol 134 (11) ◽  
pp. 2007-2016 ◽  
Author(s):  
J. D. Lee ◽  
N. F. Silva-Gagliardi ◽  
U. Tepass ◽  
C. J. McGlade ◽  
K. V. Anderson
2018 ◽  
Author(s):  
Bechara Saykali ◽  
Navrita Mathiah ◽  
Wallis Nahaboo ◽  
Marie-Lucie Racu ◽  
Matthieu Defrance ◽  
...  

ABSTRACTIn the gastrulating mouse embryo, epiblast cells delaminate at the primitive streak to form mesoderm and definitive endoderm, through an epithelial-mesenchymal transition.Mosaic expression of a membrane reporter in nascent mesoderm enabled recording cell shape and trajectory through live imaging. Upon leaving the streak, cells changed shape and extended protrusions of distinct size and abundance depending on the neighboring germ layer, as well as the region of the embryo. Embryonic trajectories were meandrous but directional, while extra-embryonic mesoderm cells showed little net displacement.Embryonic and extra-embryonic mesoderm transcriptomes highlighted distinct guidance, cytoskeleton, adhesion, and extracellular matrix signatures. Specifically, intermediate filaments were highly expressed in extra-embryonic mesoderm, while live imaging for F-actin showed abundance of actin filaments in embryonic mesoderm only. Accordingly, RhoA or Rac1 conditional deletion in mesoderm inhibited embryonic, but not extra-embryonic mesoderm migration.Overall, this indicates separate cytoskeleton regulation coordinating the morphology and migration of mesoderm subpopulations.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Bechara Saykali ◽  
Navrita Mathiah ◽  
Wallis Nahaboo ◽  
Marie-Lucie Racu ◽  
Latifa Hammou ◽  
...  

In mouse embryo gastrulation, epiblast cells delaminate at the primitive streak to form mesoderm and definitive endoderm, through an epithelial-mesenchymal transition. Mosaic expression of a membrane reporter in nascent mesoderm enabled recording cell shape and trajectory through live imaging. Upon leaving the streak, cells changed shape and extended protrusions of distinct size and abundance depending on the neighboring germ layer, as well as the region of the embryo. Embryonic trajectories were meandrous but directional, while extra-embryonic mesoderm cells showed little net displacement. Embryonic and extra-embryonic mesoderm transcriptomes highlighted distinct guidance, cytoskeleton, adhesion, and extracellular matrix signatures. Specifically, intermediate filaments were highly expressed in extra-embryonic mesoderm, while live imaging for F-actin showed abundance of actin filaments in embryonic mesoderm only. Accordingly, Rhoa or Rac1 conditional deletion in mesoderm inhibited embryonic, but not extra-embryonic mesoderm migration. Overall, this indicates separate cytoskeleton regulation coordinating the morphology and migration of mesoderm subpopulations.


2016 ◽  
Vol 113 (14) ◽  
pp. 3820-3825 ◽  
Author(s):  
Jianjian Zhu ◽  
Kin Ming Kwan ◽  
Susan Mackem

The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial–mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.


2016 ◽  
Vol 28 (2) ◽  
pp. 162
Author(s):  
H. Y. Kang ◽  
Y.-K. Choi ◽  
J.-U. Hwang ◽  
E.-B. Jeung

Steroidogenic factor 1 (SF-1) is essential for the development and function of steroidogenic tissues. Stable incorporation of SF-1 into embryonic stem cells has been reported to prime the cells for steroidogenesis. In this study, we transfected mouse embryonic stem cells (mESCs) with the mouse SF1 gene (SF1-mESCs) by using the nucleofector (Lonza), and selected SF1-mESCs by G418 250 μg mL–1. The selected cells were differentiated into granulosa-like cells through hanging-drops for 3 days, suspension culture for 1 day, then attachment onto 6-well plates. Expression of steroidogenesis-related genes and gonadal lineage-markers was analysed by real-time PCR. To test the phenotype for granulosa-like cells, transcripts of specific forkhead transcription factor (Foxl2) and follicle stimulating hormone receptor (Fshr) were measured. Also, expression of EMT-related genes, such as E-Cadherin (Cdh1), N-Cadherin (Cdh2), Snai1, Snai2 (Slug), Twist, and Vimentin, was monitored. SF1-mESCs were differentiated into the primitive streak‐mesendoderm and the steroidogenic enzymes such as 3β-hydroxysteroid dehydrogenase (Hsd3b1), cytochrome P450-containing enzyme (Cyp)-11a1, and Cyp19a1 were time-dependently changed. Next, the mRNA levels of Foxl2 and Fshr representing granulosa-like cell were increased during differentiation of SF1-mESCs. Especially, the level of oestradiol and Cdh2 was increased at a specific differentiation time. We induced differentiation of mESCs into the functional granulosa-like cells through transfection of the mouse SF1 gene. These cells will be useful for further study and potential application of these cells in steroidogenesis. This research was supported by a grant (15182MFDS460) from the Ministry of Food and Drug Safety in 2015.


2020 ◽  
Author(s):  
Evangéline Despin-Guitard ◽  
Navrita Mathiah ◽  
Matthew Stower ◽  
Wallis Nahaboo ◽  
Elif Sema Eski ◽  
...  

ABSTRACTThe epiblast, a pseudostratified epithelium, is the precursor for the three main germ layers required for body shape and organogenesis: ectoderm, mesoderm, and endoderm. At gastrulation, a subpopulation of epiblast cells constitutes a transient posteriorly located structure called the primitive streak, where cells that undergo epithelial-mesenchymal transition make up the mesoderm and endoderm lineages.In order to observe the behavior of individual cells, epiblast cells were labeled ubiquitously or in a mosaic fashion using fluorescent membrane reporters. The cell shapes of individual cells and the packing and behaviour of neighbouring cells during primitive streak formation were recorded through live time-lapse imaging. Posterior epiblast displayed a higher frequency of rosettes, a signature of cell rearrangements, prior to primitive streak initiation. A third of rosettes were associated with a central cell undergoing mitosis. Interestingly, cells at the primitive streak, in particular delaminating cells, underwent mitosis twice more frequently than other epiblast cells, suggesting a role for cell division in epithelial-mesenchymal transition. Pseudostratified epithelia are characterized by interkinetic nuclear migration, where mitosis occurs at the apical side of the epithelium. However, we found that exclusively on the posterior side of the epiblast, mitosis was not restricted to the apical side. Non-apical mitosis was apparent as early as E5.75, just after the establishment of the anterior-posterior axis, and prior to initiation of epithelial-mesenchymal transition. Non-apical mitosis was associated with primitive streak morphogenesis, as it occurred specifically in the streak even when ectopically located. Most non-apical mitosis resulted in one or two daughter cells leaving the epiblast layer to become mesoderm. Furthermore, in contrast to what has been described in other pseudostratified epithelia such as neuroepithelium, the majority of cells dividing apically detached completely from the basal pole in the epiblast.Cell rearrangement associated with mitotic cell rounding in the posterior epiblast during gastrulation, in particular when it occurs on the basal side, might thus facilitate cell ingression through the PS and transition to a mesenchymal phenotype.GRAPHICAL ABSTRACT


2021 ◽  
Vol 22 (8) ◽  
pp. 3888
Author(s):  
Siti A. M. Imran ◽  
Muhammad Dain Yazid ◽  
Ruszymah Bt Hj Idrus ◽  
Manira Maarof ◽  
Abid Nordin ◽  
...  

Epithelial–Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.


Sign in / Sign up

Export Citation Format

Share Document