scholarly journals An asymmetry in the frequency and position of mitosis in the epiblast precedes gastrulation and suggests a role for mitotic rounding in cell delamination during primitive streak epithelial-mesenchymal transition

2020 ◽  
Author(s):  
Evangéline Despin-Guitard ◽  
Navrita Mathiah ◽  
Matthew Stower ◽  
Wallis Nahaboo ◽  
Elif Sema Eski ◽  
...  

ABSTRACTThe epiblast, a pseudostratified epithelium, is the precursor for the three main germ layers required for body shape and organogenesis: ectoderm, mesoderm, and endoderm. At gastrulation, a subpopulation of epiblast cells constitutes a transient posteriorly located structure called the primitive streak, where cells that undergo epithelial-mesenchymal transition make up the mesoderm and endoderm lineages.In order to observe the behavior of individual cells, epiblast cells were labeled ubiquitously or in a mosaic fashion using fluorescent membrane reporters. The cell shapes of individual cells and the packing and behaviour of neighbouring cells during primitive streak formation were recorded through live time-lapse imaging. Posterior epiblast displayed a higher frequency of rosettes, a signature of cell rearrangements, prior to primitive streak initiation. A third of rosettes were associated with a central cell undergoing mitosis. Interestingly, cells at the primitive streak, in particular delaminating cells, underwent mitosis twice more frequently than other epiblast cells, suggesting a role for cell division in epithelial-mesenchymal transition. Pseudostratified epithelia are characterized by interkinetic nuclear migration, where mitosis occurs at the apical side of the epithelium. However, we found that exclusively on the posterior side of the epiblast, mitosis was not restricted to the apical side. Non-apical mitosis was apparent as early as E5.75, just after the establishment of the anterior-posterior axis, and prior to initiation of epithelial-mesenchymal transition. Non-apical mitosis was associated with primitive streak morphogenesis, as it occurred specifically in the streak even when ectopically located. Most non-apical mitosis resulted in one or two daughter cells leaving the epiblast layer to become mesoderm. Furthermore, in contrast to what has been described in other pseudostratified epithelia such as neuroepithelium, the majority of cells dividing apically detached completely from the basal pole in the epiblast.Cell rearrangement associated with mitotic cell rounding in the posterior epiblast during gastrulation, in particular when it occurs on the basal side, might thus facilitate cell ingression through the PS and transition to a mesenchymal phenotype.GRAPHICAL ABSTRACT

2004 ◽  
Vol 19 (3) ◽  
pp. 274-279
Author(s):  
Shigeaki Kanatani ◽  
Hidenori Tabata ◽  
Kazunori Nakajima

Cortical formation in the developing brain is a highly complicated process involving neuronal production (through symmetric or asymmetric cell division) interaction of radial glia with neuronal migration, and multiple modes of neuronal migration. It has been convincingly demonstrated by numerous studies that radial glial cells are neural stem cells. However, the processes by which neurons arise from radial glia and migrate to their final destinations in vivo are not yet fully understood. Recent studies using time-lapse imaging of neuronal migration are giving investigators an increasingly more detailed understanding of the mitotic behavior of radial glia and the migrating behavior of their daughter cells. In this review, we describe recent progress in elucidating neuronal migration in brain formation and how neuronal migration is disturbed by mutations in genes that control this process. ( J Child Neurol 2005;20:274—279).


Author(s):  
Julia A. Henkels ◽  
Evan A. Zamir

Before the explosion of genetics research in the last century, embryonic development was largely studied from a mechanical perspective. Paired with genetic advances in understanding developmental signaling pathways and induction mechanisms, an important goal for understanding morphogenesis is to discover how the genome codes for changes in the mechanical movements of the embryonic cells. After formation of the zygote, a phase of rapid mitotic cell division is followed by epithelialization resulting in a cohesive sheet of cells termed the epiblast. During the next major phase of triploblastic development called gastrulation, a group of undifferentiated cells in the epiblast moves collectively to the embryonic midline and eventually gives rise to the three primary germ layers: endoderm, mesoderm, and ectoderm. At the primitive streak—the “organizing center” in amniotes (reptiles, birds, and mammals) which delineates anterior-posterior polarity—prospective endodermal and mesodermal precursors undergo epithelial-to-mesenchymal transition (EMT), internalization, and eventually organogenesis. “It is not birth, marriage, or death, but gastrulation which is truly the most important time in your life” (Lewis Wolpert, 1986).


2016 ◽  
Vol 113 (14) ◽  
pp. 3820-3825 ◽  
Author(s):  
Jianjian Zhu ◽  
Kin Ming Kwan ◽  
Susan Mackem

The transcription factor Brachyury (T) gene is expressed throughout primary mesoderm (primitive streak and notochord) during early embryonic development and has been strongly implicated in the genesis of chordoma, a sarcoma of notochord cell origin. Additionally, T expression has been found in and proposed to play a role in promoting epithelial–mesenchymal transition (EMT) in various other types of human tumors. However, the role of T in normal mammalian notochord development and function is still not well-understood. We have generated an inducible knockdown model to efficiently and selectively deplete T from notochord in mouse embryos. In combination with genetic lineage tracing, we show that T function is essential for maintaining notochord cell fate and function. Progenitors adopt predominantly a neural fate in the absence of T, consistent with an origin from a common chordoneural progenitor. However, T function is dispensable for progenitor cell survival, proliferation, and EMT, which has implications for the therapeutic targeting of T in chordoma and other cancers.


2016 ◽  
Vol 28 (2) ◽  
pp. 162
Author(s):  
H. Y. Kang ◽  
Y.-K. Choi ◽  
J.-U. Hwang ◽  
E.-B. Jeung

Steroidogenic factor 1 (SF-1) is essential for the development and function of steroidogenic tissues. Stable incorporation of SF-1 into embryonic stem cells has been reported to prime the cells for steroidogenesis. In this study, we transfected mouse embryonic stem cells (mESCs) with the mouse SF1 gene (SF1-mESCs) by using the nucleofector (Lonza), and selected SF1-mESCs by G418 250 μg mL–1. The selected cells were differentiated into granulosa-like cells through hanging-drops for 3 days, suspension culture for 1 day, then attachment onto 6-well plates. Expression of steroidogenesis-related genes and gonadal lineage-markers was analysed by real-time PCR. To test the phenotype for granulosa-like cells, transcripts of specific forkhead transcription factor (Foxl2) and follicle stimulating hormone receptor (Fshr) were measured. Also, expression of EMT-related genes, such as E-Cadherin (Cdh1), N-Cadherin (Cdh2), Snai1, Snai2 (Slug), Twist, and Vimentin, was monitored. SF1-mESCs were differentiated into the primitive streak‐mesendoderm and the steroidogenic enzymes such as 3β-hydroxysteroid dehydrogenase (Hsd3b1), cytochrome P450-containing enzyme (Cyp)-11a1, and Cyp19a1 were time-dependently changed. Next, the mRNA levels of Foxl2 and Fshr representing granulosa-like cell were increased during differentiation of SF1-mESCs. Especially, the level of oestradiol and Cdh2 was increased at a specific differentiation time. We induced differentiation of mESCs into the functional granulosa-like cells through transfection of the mouse SF1 gene. These cells will be useful for further study and potential application of these cells in steroidogenesis. This research was supported by a grant (15182MFDS460) from the Ministry of Food and Drug Safety in 2015.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Aishah Nasir ◽  
Alice Cardall ◽  
Ramadhan T Othman ◽  
Niovi Nicolaou ◽  
Anbarasu Lourdusamy ◽  
...  

Abstract Background Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial–mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. Methods A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. Results Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). Conclusions In this study, we identified a TWIST1–ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.


2018 ◽  
Author(s):  
Bechara Saykali ◽  
Navrita Mathiah ◽  
Wallis Nahaboo ◽  
Marie-Lucie Racu ◽  
Matthieu Defrance ◽  
...  

ABSTRACTIn the gastrulating mouse embryo, epiblast cells delaminate at the primitive streak to form mesoderm and definitive endoderm, through an epithelial-mesenchymal transition.Mosaic expression of a membrane reporter in nascent mesoderm enabled recording cell shape and trajectory through live imaging. Upon leaving the streak, cells changed shape and extended protrusions of distinct size and abundance depending on the neighboring germ layer, as well as the region of the embryo. Embryonic trajectories were meandrous but directional, while extra-embryonic mesoderm cells showed little net displacement.Embryonic and extra-embryonic mesoderm transcriptomes highlighted distinct guidance, cytoskeleton, adhesion, and extracellular matrix signatures. Specifically, intermediate filaments were highly expressed in extra-embryonic mesoderm, while live imaging for F-actin showed abundance of actin filaments in embryonic mesoderm only. Accordingly, RhoA or Rac1 conditional deletion in mesoderm inhibited embryonic, but not extra-embryonic mesoderm migration.Overall, this indicates separate cytoskeleton regulation coordinating the morphology and migration of mesoderm subpopulations.


Sign in / Sign up

Export Citation Format

Share Document