scholarly journals Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes

Development ◽  
2010 ◽  
Vol 138 (2) ◽  
pp. 359-370 ◽  
Author(s):  
Y. Li ◽  
M. J. Ahrens ◽  
A. Wu ◽  
J. Liu ◽  
A. T. Dudley
2009 ◽  
Vol 297 (4) ◽  
pp. L706-L714 ◽  
Author(s):  
David F. Meoli ◽  
R. James White

Pulmonary arterial hypertension (PAH) is a progressive disease of excess vasoconstriction and vascular cell proliferation that results in increased pulmonary vascular resistance and right heart failure. We have previously shown ( 66 ) that tissue factor expression is increased in the abnormal vessels of patients and rats with PAH. We hypothesized that tissue factor and its downstream mediator, thrombin, would promote migration of endothelial cells (EC) and the vascular pathology of PAH. Immunostaining revealed EC and a fibronectin-enriched matrix within the “plexiform-like” lesions in a rat model of severe PAH. In a modified Boyden assay, protease-activated receptor 1 (PAR1; thrombin receptor) stimulation by agonist peptide or thrombin induced pulmonary microvascular EC (PMVEC) migration when the cells were interacting with fibronectin, but not with other extracellular matrix proteins. Thrombin/fibronectin-induced migration was confirmed in wound healing and angiogenesis assays and was abrogated by the PAR1 antagonist SCH79797 and soluble RGD peptide. This fibronectin dependence was unique to PAR1 activation; other EC agonists evaluated did not induce migration on any matrix, and 10% FBS stimulated similar levels of migration on all matrix proteins tested. Thrombin/fibronectin stimulated autophosphorylation of calcium/calmodulin dependent protein kinase II (CaMKII) in PMVEC, and inhibitors of CaMKII blocked thrombin-induced migration on fibronectin, but had no effect on migration induced by 10% FBS. In contrast, EC isolated from the proximal pulmonary artery migrated in response to most agonists independent of the matrix substrate. Our findings illustrate EC heterogeneity in a single tissue and indicate a novel role for CaMKII in mediating EC migration. Because PMVEC have been shown to have impressive proliferative potential, thrombin/fibronectin-stimulated migration of these cells to a site of injured endothelium is a potential mechanism by which thrombin contributes to the development of vascular lesions in PAH.


1998 ◽  
Vol 67 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Wendy W. Waters ◽  
Pat L. Chen ◽  
Newell H. McArthur ◽  
Pete A. Moreno ◽  
Paul G. Harms

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
D. E. Johnson ◽  
A. Hudmon

Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly concentrated in the brain where its activation by the Ca2+sensor CaM, multivalent structure, and complex autoregulatory features make it an ideal translator of Ca2+signals created by different patterns of neuronal activity. We provide direct evidence that graded levels of kinase activity and extent of T287(T286αisoform) autophosphorylation drive changes in catalytic output and substrate selectivity. The catalytic domains of CaMKII phosphorylate purified PSDs much more effectively when tethered together in the holoenzyme versus individual subunits. Using multisubstrate SPOT arrays, high-affinity substrates are preferentially phosphorylated with limited subunit activity per holoenzyme, whereas multiple subunits or maximal subunit activation is required for intermediate- and low-affinity, weak substrates, respectively. Using a monomeric form of CaMKII to control T287autophosphorylation, we demonstrate that increased Ca2+/CaM-dependent activity for all substrates tested, with the extent of weak, low-affinity substrate phosphorylation governed by the extent of T287autophosphorylation. Our data suggest T287autophosphorylation regulates substrate gating, an intrinsic property of the catalytic domain, which is amplified within the multivalent architecture of the CaMKII holoenzyme.


Sign in / Sign up

Export Citation Format

Share Document