Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo

Development ◽  
1988 ◽  
Vol 103 (1) ◽  
pp. 49-58 ◽  
Author(s):  
E. Hanneman ◽  
B. Trevarrow ◽  
W.K. Metcalfe ◽  
C.B. Kimmel ◽  
M. Westerfield

In the ventral hindbrain and spinal cord of zebrafish embryos, the first neurones that can be identified appear as single cells or small clusters of cells, distributed periodically at intervals equal to the length of a somite. In the hindbrain, a series of neuromeres of corresponding length is present, and the earliest neurones are located in the centres of each neuromere. Young neurones within both the hindbrain and spinal cord were identified in live embryos using Nomarski optics, and histochemically by labelling for acetylcholinesterase activity and expression of an antigen recognized by the monoclonal antibody zn-1. Among them are individually identified hindbrain reticulospinal neurones and spinal motoneurones. These observations suggest that early development in these regions of the CNS reflects a common segmental pattern. Subsequently, as more neurones differentiate, the initially similar patterning of the cells in these two regions diverges. A continuous longitudinal column of developing neurones appears in the spinal cord, whereas an alternating series of large and small clusters of neurones is present in the hindbrain.

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 652 ◽  
Author(s):  
Wang Lee ◽  
Eungwang Kim ◽  
Hyun-Ju Cho ◽  
Taejoon Kang ◽  
Bongsoo Kim ◽  
...  

A silver nanoparticle is one of the representative engineered nanomaterials with excellent optical, electrical, antibacterial properties. Silver nanoparticles are being increasingly used for medical products, water filters, and cosmetics, etc. However, silver nanoparticles are known to cause adverse effects on the ecosystem and human health. To utilize silver nanoparticles with minimized negative effects, it is important to understand the behavior of silver nanoparticles released to the environment. In this study, we compared toxicity behaviors of citrate-stabilized silver nanoparticles with polyethylene glycol coated silver nanoparticles in two different ionic environments, which are aquatic environments for developing zebrafish embryo. Depending on the composition of the ionic environment, citrate-stabilized silver nanoparticles and polyethylene glycol coated silver nanoparticles exhibited different behaviors in dissolution, aggregation, or precipitation, which governed the toxicity of silver nanoparticles on zebrafish embryos.


Development ◽  
1987 ◽  
Vol 100 (2) ◽  
pp. 339-349 ◽  
Author(s):  
L. Pardanaud ◽  
C. Altmann ◽  
P. Kitos ◽  
F. Dieterlen-Lievre ◽  
C.A. Buck

QH1, a monoclonal antibody that recognizes quail endothelial and haemopoietic cells, was applied to quail blastodiscs in toto, in order to analyse by immunofluorescence the emergence of the vascular tree. The first endothelial cells were detected in the area opaca at the headfold stage and in the area pellucida at the 1-somite stage. Single cells then interconnected progressively, especially in the anterior intestinal portal and along the somites building up the linings of the heart and dorsal aortas. This study demonstrates that endothelial cells differentiate as single entities 4 h earlier in development than hitherto detected and that the vascular network forms secondarily. The horseshoe shape of the extraembryonic area vasculosa is also a secondary acquisition. A nonvascularized area persists until later (at least the 14-somite stage) in the region of the regressing primitive streak.


2018 ◽  
Vol 43 (11) ◽  
pp. 1176-1185 ◽  
Author(s):  
Kevin E. Power ◽  
Evan J. Lockyer ◽  
Davis A. Forman ◽  
Duane C. Button

In quadrupeds, special circuity located within the spinal cord, referred to as central pattern generators (CPGs), is capable of producing complex patterns of activity such as locomotion in the absence of descending input. During these motor outputs, the electrical properties of spinal motoneurones are modulated such that the motoneurone is more easily activated. Indirect evidence suggests that like quadrupeds, humans also have spinally located CPGs capable of producing locomotor outputs, albeit descending input is considered to be of greater importance. Whether motoneurone properties are reconfigured in a similar manner to those of quadrupeds is unclear. The purpose of this review is to summarize our current state of knowledge regarding the modulation of motoneurone excitability during CPG-mediated motor outputs using animal models. This will be followed by more recent work initially aimed at understanding changes in motoneurone excitability during CPG-mediated motor outputs in humans, which quickly expanded to also include supraspinal excitability.


Author(s):  
Natália Oliveira de Farias ◽  
Rhaul Oliveira ◽  
Diego Sousa-Moura ◽  
Reginaldo Carlyle Silva de Oliveira ◽  
Maria Augusta Carvalho Rodrigues ◽  
...  

Author(s):  
Tatsuya Yuikawa ◽  
Masaaki Ikeda ◽  
Sachiko Tsuda ◽  
Shinji Saito ◽  
Kyo Yamasu

Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 191-203 ◽  
Author(s):  
B.I. Meyer ◽  
P. Gruss

We describe the expression pattern of the mouse Cdx-1 gene during early development, examined by both RNA and protein analyses. Cdx-1 expression began with the onset of the head process formation (day 7.5) in ectodermal and mesodermal cells of the primitive streak. Expression extended initially to the middle of the prospective hindbrain and subsequently regressed caudad to the spinal cord level by day 9.5. The mesoderm-specific expression was detected in the first somites and could be followed during their differentiation to the myotome of the dorsal somitic edge by day 12. The developing limb buds and the mesonephros exhibited expression up to day 12. No signal could be detected in notochordal cells and cells of the definitive endoderm. Thus, Cdx-1 is expressed during gastrulation when anterior-posterior positional values are established along the embryonic axes. Furthermore, the expression correlates with the formation of segmented tissue in the posterior hindbrain, the spinal cord and structures like the mesonephros.


2008 ◽  
Vol 237 (8) ◽  
pp. 2081-2089 ◽  
Author(s):  
Ho Kim ◽  
Jimann Shin ◽  
Suhyun Kim ◽  
Justin Poling ◽  
Hae-Chul Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document