Mouse Cdx-1 expression during gastrulation

Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 191-203 ◽  
Author(s):  
B.I. Meyer ◽  
P. Gruss

We describe the expression pattern of the mouse Cdx-1 gene during early development, examined by both RNA and protein analyses. Cdx-1 expression began with the onset of the head process formation (day 7.5) in ectodermal and mesodermal cells of the primitive streak. Expression extended initially to the middle of the prospective hindbrain and subsequently regressed caudad to the spinal cord level by day 9.5. The mesoderm-specific expression was detected in the first somites and could be followed during their differentiation to the myotome of the dorsal somitic edge by day 12. The developing limb buds and the mesonephros exhibited expression up to day 12. No signal could be detected in notochordal cells and cells of the definitive endoderm. Thus, Cdx-1 is expressed during gastrulation when anterior-posterior positional values are established along the embryonic axes. Furthermore, the expression correlates with the formation of segmented tissue in the posterior hindbrain, the spinal cord and structures like the mesonephros.

Development ◽  
1993 ◽  
Vol 117 (3) ◽  
pp. 1001-1016 ◽  
Author(s):  
M.D. Goulding ◽  
A. Lumsden ◽  
P. Gruss

Members of the paired box (Pax) gene family are expressed in discrete regions of the developing central nervous system, suggesting a role in neural patterning. In this study, we describe the isolation of the chicken homologues of Pax-3 and Pax-6. Both genes are very highly conserved and share extensive homology with the mouse Pax-3 and Pax-6 genes. Pax-3 is expressed in the primitive streak and in two bands of cells at the lateral extremity of the neural plate. In the spinal cord, Pax-6 is expressed later than Pax-3 with the first detectable expression preceding closure of the neural tube. When the neural tube closes, transcripts of both genes become dorsoventrally restricted in the undifferentiated mitotic neuroepithelium. We show that the removal of the notochord, or implantation of an additional notochord, dramatically alter the dorsoventral (DV) expression patterns of Pax-3 and Pax-6. These manipulations suggest that signals from the notochord and floor plate regulate the establishment of the dorsoventrally restricted expression domains of Pax-3 and Pax-6 in the spinal cord. The rapid changes to Pax gene expression that occur in neural progenitor cells following the grafting of an ectopic notochord suggest that changes to Pax gene expression are an early effect of the notochord on spinal cord patterning.


2021 ◽  
pp. 1-8
Author(s):  
Costanza Ferrari Bardile ◽  
Harwin Sidik ◽  
Reynard Quek ◽  
Nur Amirah Binte Mohammad Yusof ◽  
Marta Garcia-Miralles ◽  
...  

Background: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington’s disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. Objective: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. Methods: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. Results: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. Conclusion: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


1998 ◽  
Vol 800 (2) ◽  
pp. 216-226 ◽  
Author(s):  
Hong-Guang Liu ◽  
Guang-Xiang Hong ◽  
Fa-Bin Wang ◽  
Fang Chen

Development ◽  
1990 ◽  
Vol 110 (4) ◽  
pp. 1159-1168 ◽  
Author(s):  
R. Vogels ◽  
W. de Graaff ◽  
J. Deschamps

This study reports the expression pattern of the murine homeobox-containing gene Hox-2.3 during development. Using in situ hybridization, we first detect Hox-2.3 transcripts in the allantois primordium at 7.5 days post coitum (p.c.). One day later transcripts are found in embryonic ectoderm and mesoderm. In 9.5- and 10.5- day embryos Hox-2.3 expression is observed in the central nervous system (CNS) from a rostral boundary in the upper spinal cord to the caudal end. Within this anteroposterior domain, Hox-2.3 expression is also found in the peripheral nervous system, in the mesoderm and in the hindgut epithelium. The rostral boundary in the mesoderm is located at the level of the 11th somite and thus shifted posteriorwards compared to the rostral boundary in the neural tube. During subsequent development, the initially broad expression pattern in the somitic, lateral plate and intermediate mesoderm becomes restricted to structures in the urogenital system. In adults, the spinal cord and the derivatives of the Wolffian and Mullerian ducts continue to express the gene at a high level. The described temporal and tissue-specific changes in expression of Hox-2.3 are suggestive of several levels of regulation as reported for Drosophila homeotic genes and argue for more than one role of the gene during development and in adults.


1980 ◽  
Vol 66 (3) ◽  
pp. 405-408 ◽  
Author(s):  
Romano Ferracini ◽  
Giorgio Gardini ◽  
Massimo Brisigotti ◽  
Giuseppe Lanzanova ◽  
Valeria Manetto ◽  
...  

The first case in the literature of a metastasizing meningeal melanocytoma is described. The tumor, which arose at the D9-D11 spinal cord level of a 46-year-old woman, metastasized 7 years later to the latero-suprasellar region.


2021 ◽  
Author(s):  
Jonathan D Rumley ◽  
Elicia A Preston ◽  
Dylan Cook ◽  
Felicia L Peng ◽  
Amanda L Zacharias ◽  
...  

Patterning of the anterior-posterior axis is fundamental to animal development. The Wnt pathway plays a major role in this process by activating the expression of posterior genes in animals from worms to humans. This observation raises the question of whether the Wnt pathway or other regulators control the expression of the many anterior-expressed genes. We found that the expression of five anterior-specific genes in Caenorhabditis elegans embryos depends on the Wnt pathway effectors pop-1/TCF and sys-1/β-catenin. We focused further on one of these anterior genes, ref-2/ZIC, a conserved transcription factor expressed in multiple anterior lineages. Live imaging of ref-2 mutant embryos identified defects in cell division timing and position in anterior lineages. Cis-regulatory dissection identified three ref-2 transcriptional enhancers, one of which is necessary and sufficient for anterior-specific expression. This enhancer is activated by the T-box transcription factors TBX-37 and TBX-38, and surprisingly, concatemerized TBX-37/38 binding sites are sufficient to drive anterior-biased expression alone, despite the broad expression of TBX-37 and TBX-38. Taken together, our results highlight the diverse mechanisms used to regulate anterior expression patterns in the embryo.


2021 ◽  
Vol 11 ◽  
Author(s):  
Voddu Suresh ◽  
Deepti Parida ◽  
Aliva P. Minz ◽  
Manisha Sethi ◽  
Bhabani S. Sahoo ◽  
...  

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models’ optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn’t show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study’s findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.


2019 ◽  
Author(s):  
Dick R Nässel ◽  
Dennis Pauls ◽  
Wolf Huetteroth

Neuropeptides constitute a large and diverse class of signaling molecules that are produced by many types of neurons, neurosecretory cells, endocrines and other cells. Many neuropeptides display pleiotropic actions either as neuromodulators, co-transmitters or circulating hormones, while some play these roles concurrently. Here, we highlight pleiotropic functions of neuropeptides and different levels of neuropeptide signaling in the brain, from context-dependent orchestrating signaling by higher order neurons, to local executive modulation in specific circuits. Additionally, orchestrating neurons receive peptidergic signals from neurons conveying organismal internal state cues and relay these to executive circuits. We exemplify these levels of signaling with four neuropeptides, SIFamide, short neuropeptide F, allatostatin-A and leucokinin, each with a specific expression pattern and level of complexity in signaling.


2019 ◽  
Author(s):  
Mijo Simunovic ◽  
Ali H. Brivanlou ◽  
Eric D. Siggia

Abstract We describe the protocol of generating a 3D stem-cell-based model of the human pre-gastrulation epiblast by culturing human embryonic stem cells in a mix of hydrogel and Matrigel. Much like the epiblast of an in vitro attached day-10 human embryo, this model is an epithelial sphere with a cavity at its center, it is expressing key pluripotency markers, and it displays apico-basal polarity. The 3D colonies can further be differentiated with morphogens and in the case of intermediate concentrations of BMP4, they break the anterior-posterior symmetry characterized by an asymmetric expression of a primitive streak marker and showing signs of epithelial to mesenchymal transition. The protocol described here is suitable for immunofluorescence staining and for live-cell imaging.


Sign in / Sign up

Export Citation Format

Share Document