Differential co-expression of long and short form type IX collagen transcripts during avian limb chondrogenesis in ovo

Development ◽  
1992 ◽  
Vol 115 (1) ◽  
pp. 169-179
Author(s):  
R.E. Swiderski ◽  
M. Solursh

Using RNA blot analysis of developmentally staged avian limb buds, we demonstrate that transcripts of several cartilage marker genes appear in limb tissue prior to overt chondrogenesis. Type II collagen mRNA, cartilage proteoglycan core protein mRNA, alpha 2(IX) collagen mRNA, and transcripts of the short form alpha 1(IX) collagen chain derived from the downstream promoter are co-expressed in limb tissue approximately 24–36 hours before the appearance of the respective polypeptides in differentiating cartilagenous tissue. Transcripts of the long form alpha 1(IX) collagen chain derived from the upstream promoter appear somewhat later in development; nearly coincident with the immunolocalization of type IX collagen in the cartilage elements of the limb. The spatial distribution of type II and type IX collagen transcripts was analyzed by in situ hybridization. Type II collagen and the long form alpha 1(IX) collagen transcripts co-localized in the chondrogenic elements of the developing forelimb. In contrast, short form alpha 1(IX) collagen transcripts which lack the 5′ region encoding the NC4 globular amino-terminal domain were distributed throughout the non-chondrogenic, non-myogenic mesenchymal regions of the limb and were not detectable above background levels in the limb chondrogenic elements. The precocious appearance of several cartilage marker gene transcripts prior to chondrogenesis suggests that multiple levels of gene regulation including alternative promoter use, alternative RNA splicing, alternative polyadenylation, and other post-transcriptional as well as translational mechanisms are active prior to, and during avian limb chondrogenesis.

1992 ◽  
Vol 118 (1) ◽  
pp. 203-212 ◽  
Author(s):  
M Metsäranta ◽  
S Garofalo ◽  
G Decker ◽  
M Rintala ◽  
B de Crombrugghe ◽  
...  

We have generated transgenic mice by microinjection of a 39-kb mouse pro alpha 1(II) collagen gene construct containing a deletion of exon 7 and intron 7. This mutation was expected to disturb the assembly and processing of the homotrimeric type II collagen molecule in cartilage. Expression of transgene mRNA at levels equivalent or higher than the endogenous mRNA in the offspring of two founder animals resulted in a severe chondrodysplastic phenotype with short limbs, hypoplastic thorax, abnormal craniofacial development, and other skeletal deformities. The affected pups died at birth due to respiratory distress. Light microscopy of epiphyseal growth plates of transgenic pups demonstrated a marked reduction in cartilaginous extracellular matrix and disruption of the normal organization of the growth plate. The zone of proliferating chondrocytes was greatly reduced whereas the zone of hypertrophic chondrocytes was markedly increased extending deep into the diaphysis suggestive of a defect in endochondral ossification. Electron microscopic examination revealed chondrocytes with extended RER, a very severe reduction in the amount of cartilage collagen fibrils, and abnormalities in their structure. We postulate that the deletion in the alpha 1(II) collagen acts as a dominant negative mutation disrupting the assembly and secretion of type II collagen molecules. The consequences of the mutation include interference with normal endochondral ossification. These mice constitute a valuable model to study the mechanisms underlying human chondrodysplasias and normal bone formation.


2002 ◽  
Vol 277 (52) ◽  
pp. 50668-50675 ◽  
Author(s):  
Wendong Huang ◽  
Ni Lu ◽  
Heidi Eberspaecher ◽  
Benoit de Crombrugghe

1996 ◽  
Vol 244 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Michelle S. Hirsch ◽  
Karen Chang ◽  
Winston W.-Y. Kao ◽  
Kathy K.H. Svoboda

1986 ◽  
Vol 103 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
M Takeda ◽  
H Iwata ◽  
S Suzuki ◽  
K S Brown ◽  
K Kimata

The cartilage matrix deficiency (cmd/cmd) mouse fails to synthesize the core protein of cartilage-characteristic proteoglycan (cartilage PG). Chondrocytes from the cmd/cmd cartilage cultured in vitro produced nodules with greatly reduced extracellular matrix. Immunofluorescence staining revealed that the nodules of mutant cells differed from the normal in lacking cartilage PG and in uneven and reduced deposition of type II collagen. Exogenously added cartilage PG prepared from either normal mouse cartilage or Swarm rat chondrosarcoma to the culture medium was incorporated exclusively into the extracellular matrices of the nodules, with a concurrent correction of the abnormal distribution pattern of type II collagen. The incorporation of cartilage PG into the matrix was disturbed by hyaluronic acid or decasaccharide derived therefrom, suggesting that the incorporation process involves the interaction of added proteoglycan with hyaluronic acid. Both the hyaluronic acid-binding region and the protein-enriched core molecule prepared from rat chondrosarcoma cartilage PG could also be incorporated but, unlike the intact cartilage PG, they were distributed equally in the surrounding zones where fibroblast-like cells predominate. The results indicate that the intact form of cartilage PG is required for specific incorporation into the chondrocyte nodules, and further suggest that cartilage PG plays a regulatory role in the assembly of the matrix macromolecules.


2015 ◽  
Vol 36 (6) ◽  
pp. 2480-2493 ◽  
Author(s):  
Guoqing Du ◽  
Yi Song ◽  
Lei Wei ◽  
Linghui Li ◽  
Xuezong Wang ◽  
...  

Background/Aims: Cartilage destruction is thought to be the major mediator of osteoarthritis. Recent studies suggest that inhibition of subchrondral bone loss by anti-osteoporosis (OP) drug can protect cartilige erosion. Osthole, as a promising agent for treating osteoporosis, may show potential in treating osteoarthritis. The purpose of this study was to investigate whether Osthole affects the proliferation and catabolism of rat chondrocytes, and the degeneration of cartilage explants. Methods: Rat chondrocytes were treated with Osthole (0 μM, 6.25 μM, 12.5 μM, and 25 μM) with or without IL1-β (10ng/ml) for 24 hours. The expression levels of type II collagen and MMP13 were detected by western Blot. Marker genes for chondrocytes (A-can and Sox9), matrix metalloproteinases (MMPs), aggrecanases (ADAMTS5) and genes implicated in extracellular matrix catabolism were evaluated by qPCR. Cell proliferation was assessed by measuring proliferating cell nuclear antigen (PCNA) expression and fluorescence activated cell sorter. Wnt7b/β-catenin signaling was also investigated. Cartilage explants from two-week old SD rats were cultured with IL-1β, Osthole and Osthole plus IL-1β for four days and glycosaminoglycan (GAG) synthesis was assessed with toluidine blue staining and Safranine O/Fast Green FCF staining, collagen type II expression was detected by immunofuorescence. Results: Osthole reduced expression of chondrocyte markers and increased expression of MMP13, ADAMTS5 and MMP9 in a dose-dependent manner. Catabolic gene expression levels were further improved by Osthole plus IL-1β. Osthole inhibited chondrocyte proliferation. GAG synthesis and type II collagen were decreased in both the IL-1β groups and the Osthole groups, and significantly reduced by Osthole plus IL-1β. Conclusions: Our data suggested that Osthole increases the catabolism of rat chondrocytes and cartilage explants, this effect might be mediated through inhibiting Wnt7b/β-catenin pathway.


Genomics ◽  
1993 ◽  
Vol 16 (1) ◽  
pp. 282-285 ◽  
Author(s):  
Miikka Vikkula ◽  
Pertti Ritvaniemi ◽  
Alpo F. Vuorio ◽  
Ilkka Kaitila ◽  
Leena Ala-Kokko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document