Non-overlapping expression of CRBP I and CRABP I during pattern formation of limbs and craniofacial structures in the early mouse embryo

Development ◽  
1993 ◽  
Vol 117 (2) ◽  
pp. 451-460 ◽  
Author(s):  
A.L. Gustafson ◽  
L. Dencker ◽  
U. Eriksson

Retinoic acid (RA), a physiological metabolite of retinol (vitamin A), is thought to be of importance for pattern formation in the developing embryo. However, the mechanism by which RA is generated, as well as the site of its formation in the developing embryo, is still unknown. In this paper, we show that radiolabelled retinol, administered to pregnant mice, is accumulated in specific locations in the embryos. As revealed by immunohistochemistry using antibodies to cellular retinol-binding protein I (CRBP I), retinol accumulates in regions of the embryo expressing CRBP I. In limbs and craniofacial structures, CRBP I expression and retinol accumulation was seen in endoderm and surface ectoderm. Most mesenchymal cells of the limbs and craniofacial structures did not express detectable levels of CRBP I but instead expressed cellular retinoic acid-binding protein I (CRABP I). Previous results have demonstrated that CRABP I is involved in accumulation of RA in the embryo. Thus, the spatially closely related but non-overlapping domains of expression of CRBP I and CRABP I suggests a role of a retinol/RA pathway in epithelial-mesenchymal interactions during pattern formation of limbs and of craniofacial structures.

Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 973-987 ◽  
Author(s):  
E. Ruberte ◽  
V. Friederich ◽  
G. Morriss-Kay ◽  
P. Chambon

We have compared the transcript distribution of cellular retinoic acid binding protein (CRABP) I and II genes in mouse embryos at various stages of development. Both CRABP transcripts are present in embryonic structures from the earliest stages studied and exhibit specific patterns of distribution, suggesting that the two retinoic acid (RA) binding proteins perform different functions during mouse embryogenesis. The CRABP I transcript distribution correlates well with structures known to be targets of excess retinoid-induced teratogenesis (e.g. neural crest cells and hindbrain), suggesting that cells expressing CRABP I are those that cannot tolerate high levels of RA for their normal developmental function. The embryonic structures expressing CRABP II transcripts include those structures that have been shown to be adversely affected by excess of retinoids, such as limbs and hindbrain, but CRABP II transcripts are also found in structures not known to be specifically vulnerable to raised RA levels. The CRABP II gene is coexpressed with retinoic acid receptor (RAR)-beta and cellular retinol binding protein (CRBP) I genes in a number of tissues such as the gut endoderm, hypophysis and interdigital mesenchyme, all of which are devoid of CRABP I transcripts. Interestingly, the expression of the three genes, RAR-beta, CRABP II and CRBP I, is induced by retinoic acid, which suggests a link between the synthesis of RA from retinol and the control of expression of subsets of RA-responsive genes. The transcript distribution of CRABP I and II is discussed in relation to the teratogenic effects of RA, and compared to the RA-sensitive pattern of expression of other important developmental genes.


1993 ◽  
Vol 268 (36) ◽  
pp. 27133-27142
Author(s):  
S Ottonello ◽  
G Scita ◽  
G Mantovani ◽  
D Cavazzini ◽  
G L Rossi

2002 ◽  
Vol 362 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Manickavasagam SUNDARAM ◽  
Daan M. F. van AALTEN ◽  
John B. C. FINDLAY ◽  
Asipu SIVAPRASADARAO

Members of the lipocalin superfamily share a common structural fold, but differ from each other with respect to the molecules with which they interact. They all contain eight β-strands (A—H) that fold to form a well-defined β-barrel, which harbours a binding pocket for hydrophobic ligands. These strands are connected by loops that vary in size and structure and make up the closed and open ends of the pocket. In addition to binding ligands, some members of the family interact with other macromolecules, the specificity of which is thought to be associated with the variable loop regions. Here, we have investigated whether the macromolecular-recognition properties can be transferred from one member of the family to another. For this, we chose the prototypical lipocalin, the plasma retinol-binding protein (RBP) and its close structural homologue the epididymal retinoic acid-binding protein (ERABP). RBP exhibits three molecular-recognition properties: it binds to retinol, to transthyretin (TTR) and to a cell-surface receptor. ERABP binds retinoic acid, but whether it interacts with other macromolecules is not known. Here, we show that ERABP does not bind to TTR and the RBP receptor, but when the loops of RBP near the open end of the pocket (L-1, L-2 and L-3, connecting β-strands A—B, C—D and E—F, respectively) were substituted into the corresponding regions of ERABP, the resulting chimaera acquired the ability to bind TTR and the receptor. L-2 and L-3 were found to be the major determinants of the receptor- and TTR-binding specificities respectively. Thus we demonstrate that lipocalins serve as excellent scaffolds for engineering novel biological functions.


1999 ◽  
Vol 77 (11) ◽  
pp. 1835-1837 ◽  
Author(s):  
Steven R Scadding

While the effects of exogenous retinoids on amphibian limb regeneration have been studied extensively, the role of endogenous retinoids is not clear. Hence, I wished to investigate the role of endogenous retinoic acid during axolotl limb regeneration. Citral is a known inhibitor of retinoic acid synthesis. Thus, I treated regenerating limbs of the larval axolotl Ambystoma mexicanum with citral. The result of this inhibition of retinoic acid synthesis was that limb regeneration became extremely irregular and hypomorphic, with serious pattern defects, or was inhibited altogether. I conclude that endogenous retinoic acid plays an important role in pattern formation during limb regeneration.


Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M. Maden ◽  
D.E. Ong ◽  
F. Chytil

We have analysed the distribution of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the day 8.5-day 12 mouse and rat embryo. CRBP is localised in the heart, gut epithelium, notochord, otic vesicle, sympathetic ganglia, lamina terminalis of the brain, and, most strikingly, in a ventral stripe across the developing neural tube in the future motor neuron region. This immunoreactivity remains in motor neurons and, at later stages, motor axons are labelled in contrast to unlabelled sensory axons. CRABP is localised to the neural crest cells, which are particularly noticeable streaming into the branchial arches. At later stages, neural crest derivatives such as Schwann cells, cells in the gut wall and sympathetic ganglia are immunoreactive. An additional area of CRABP-positive cells are neuroblasts in the mantle layer of the neural tube, which subsequently appear to be the axons and cell bodies of the commissural system. Since retinol and retinoic acid are the endogenous ligands for these binding proteins, we propose that retinoids may play a role in the development and differentiation of the mammalian nervous system and may interact with certain homoeobox genes whose transcripts have also been localised within the nervous system.


2015 ◽  
Vol 8 (4-6) ◽  
pp. 164-173 ◽  
Author(s):  
Katie Goodwin ◽  
Michal Abrahamowicz ◽  
Gabriel Leonard ◽  
Michel Perron ◽  
Louis Richer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document