Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula

Development ◽  
1993 ◽  
Vol 119 (4) ◽  
pp. 1067-1078 ◽  
Author(s):  
M. Kengaku ◽  
H. Okamoto

The vertebrate nervous system is initially induced from a section of dorsal ectoderm by signal(s) from the underlying dorsal mesoderm during gastrulation. In an effort to identify the neural inducing factor(s) emanating from the dorsal mesoderm, we have examined the inductive action of various growth factors by applying them to ectoderm cells from Xenopus gastrulae (8- to 12.5-hour age; embryonic stage 9+ to 11 1/2) in a microculture system. Monoclonal antibodies that specifically recognize cellular differentiation antigens from three distinct ectoderm lineages (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages, respectively) and a mesoderm lineage (Mu1 for muscle cells) were used as markers to monitor the differentiation of cultured ectoderm cells. We found that basic fibroblast growth factor (bFGF) was capable of specifically and reproducibly inducing gastrula ectoderm cells to produce CNS neurons and melanophores at concentrations as low as 5 pM, a value about 50-fold lower than that required to induce the formation of muscle cells from blastula animal cap cells (6-hour age; stage 8+). The induction of neural lineages by bFGF was correlated with a suppression of epidermal differentiation in a dose-dependent manner. bFGF never induced the formation of muscle cells from gastrula ectoderm cells even at concentrations as high as 5 nM. The response of ectoderm cells to bFGF changed dramatically during gastrulation. Ectoderm cells from early (8- to 9-hour age; stage 9+ to 10) gastrula gave rise to CNS neurons, but yielded few melanophores. As ectoderm cells were prepared from gastrulae of increasing age, their competence to form neurons was gradually lost, whereas the production of melanophores was enhanced and peaked in 11-hour gastrula (stage 10 1/2). The ability to form both neurons and melanophores was substantially reduced in 12.5-hour gastrula (stage 11 1/2). By examining ectoderm cells from the ventral and dorsal sides independently, it was also shown that during gastrulation the change in response to bFGF of the ventral ectoderm preceded that of the dorsal ectoderm. The state of competence of the ectoderm changed primarily due to intrinsic factors rather than by instruction from other parts of the gastrula embryo. This was shown by adding bFGF to cultures of ectoderm cells that were isolated at 9-hour (stage 10) and cultured for increasing periods to allow their autonomous development. The time course of both loss of neuronal competence and gain and loss of melanophore competence closely paralleled that observed in vivo during gastrulation.(ABSTRACT TRUNCATED AT 400 WORDS)

Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4925-4935 ◽  
Author(s):  
F. Marin ◽  
P. Charnay

Krox20 and mafB/kr are regulatory genes involved in hindbrain segmentation and anteroposterior (AP) patterning. They are expressed in rhombomeres (r) r3/r5 and r5/r6 respectively, as well as in the r5/r6 neural crest. Since several members of the fibroblast growth factor (FGF) family are expressed in the otic/preotic region (r2-r6), we investigated their possible involvement in the regulation of Krox20 and mafB/kr. Application of exogenous FGFs to the neural tube of 4- to 7-somite chick embryos led to ectopic expression in the neural crest of the somitic hindbrain (r7 and r8) and to the extension of the Krox20- or mafB/kr-positive areas in the neuroepithelium. Application of an inhibitor of FGF signalling led to severe and specific downregulation of Krox20 and mafB/kr in the hindbrain neuroepithelium and neural crest. These data indicate that FGFs are involved in the control of regional induction and/or maintenance of Krox20 and mafB/kr expression, thus identifying a novel function for these factors in hindbrain development, besides their proposed more general role in early neural caudalisation.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 1059-1069 ◽  
Author(s):  
G. Brill ◽  
N. Vaisman ◽  
G. Neufeld ◽  
C. Kalcheim

We present evidence that basic fibroblast growth factor (bFGF)-producing cells stimulate primary differentiation of neurons from neural crest progenitors. Baby hamster kidney (BHK-21) cells were stably cotransfected with plasmid pSV2/neo, which contains the gene conferring resistance to the neomycin analog G418 and expression vectors containing the human bFGF cDNA. Various clones, which differed in their bFGF production levels, were isolated. Homogeneous neural crest cells were cultured on monolayers of bFGF-producing, BHK-21-derived cell lines. While the parental BHK-21 cells, which do not produce detectable bFGF, had poor neurogenic ability, the various bFGF-producing clones promoted a 1.5- to 4-fold increase in neuronal cell number compared to the parental cells. This increase was correlated with the levels of bFGF produced by the different transfected clones, which ranged between 2.3 and 140 ng/mg protein. In contrast, no stimulation of neuronal differentiation was observed when neural crest cells were grown on monolayers of parental BHK cells transfected with plasmid pSV2/neo alone, or on a parental BHK-derived clone, which secretes high amounts of recombinant vascular endothelial growth factor (VEGF). Furthermore, the neuron-promoting ability of bFGF-producing cells could be mimicked by addition of exogenous bFGF to neural crest cells grown on the parental BHK line. A similar treatment of neural crest cells grown on laminin substrata, instead of BHK cells, resulted in increased survival of non-neuronal cells, but not of neurons (see also Kalcheim, C. 1989, Dev. Biol. 134, 1–10). Taken together, these results suggest that bFGF stimulates neuronal differentiation of neural crest cells by a cell-mediated signalling mechanism.


1994 ◽  
Vol 267 (3) ◽  
pp. H1040-H1048 ◽  
Author(s):  
A. Hassid ◽  
H. Arabshahi ◽  
T. Bourcier ◽  
G. S. Dhaunsi ◽  
C. Matthews

Fibroblast growth factor is present in blood vessels and is thought to play an important role in promoting vascular cell proliferation in vivo. In the current study, we show that three agents that activate the guanosine 3',5'-cyclic monophosphate (cGMP) system, including the nitric oxide-generating agents S-nitroso-N-acetylpenicillamine (SNAP) and 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) as well as the stable cGMP analogue 8-bromo-cGMP, increased fibroblast growth factor-2 (FGF-2; basic fibroblast growth factor)-induced [3H]thymidine incorporation by severalfold in primary cultures of rat aortic smooth muscle cells. SNAP increased the efficacy, but not the potency, of FGF-2. The stimulatory effect of SNAP was selective for FGF-2-induced mitogenesis as shown by the lack of a significant effect on [3H]thymidine incorporation induced by several other growth factors. Consistent with thymidine incorporation experiments, SNAP amplified the increase of the cellular DNA content induced by FGF-2 as well as the proliferation of cells. A selective inhibitor of cGMP phosphodiesterases, zaprinast, potentiated the comitogenic effect of SNAP and its ability to increase cGMP levels, supporting the involvement of cGMP as second messenger. Consistent with previous results, and opposite to that found in primary and early subculture, SNAP decreased mitogen-induced [3H]thymidine incorporation in cells in later subculture. Because macrophage- and vascular smooth muscle-derived nitric oxide is likely to be present in relatively large concentrations after vascular injury, we speculate that endogenous nitric oxide may amplify the activity of FGF-2 in vivo.


1997 ◽  
Vol 80 (1) ◽  
pp. 28-36 ◽  
Author(s):  
George C. Cheng ◽  
William H. Briggs ◽  
David S. Gerson ◽  
Peter Libby ◽  
Alan J. Grodzinsky ◽  
...  

Cell Cycle ◽  
2019 ◽  
Vol 18 (24) ◽  
pp. 3562-3580 ◽  
Author(s):  
Jian Huang ◽  
Kun Wang ◽  
Lora A. Shiflett ◽  
Leticia Brotto ◽  
Lynda F. Bonewald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document