Induction of the prospective neural crest of Xenopus

Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 767-777 ◽  
Author(s):  
R. Mayor ◽  
R. Morgan ◽  
M.G. Sargent

The earliest sign of the prospective neural crest of Xenopus is the expression of the ectodermal component of Xsna (the Xenopus homologue of snail) in a low arc on the dorsal aspect of stage 11 embryos, which subsequently assumes the horseshoe shape characteristic of the neural folds as the convergence-extension movements shape the neural plate. A related zinc-finger gene called Slug (Xslu) is expressed specifically in this tissue (i.e. the prospective crest) when the convergence extension movements are completed. Subsequently, Xslu is found in pre- and post-migratory cranial and trunk neural crest and also in lateral plate mesoderm after stage 17. Both Xslu and Xsna are induced by mesoderm from the dorsal or lateral marginal zone but not from the ventral marginal zone. From stage 10.5, explants of the prospective neural crest, which is underlain with tissue, are able to express Xslu. However expression of Xsna is not apparently specified until stage 12 and further contact with the inducer is required to raise the level of expression to that seen later in development. Xslu is specified at a later time. Embryos injected with noggin mRNA at the 1-cell stage or with plasmids driving noggin expression after the start of zygotic transcription express Xslu in a ring surrounding the embryo on the ventroposterior side. We suggest this indicates (a) that noggin interacts with another signal that is present throughout the ventral side of the embryo and (b) that Xslu is unable to express in the neural plate either because of the absence of a co-inducer or by a positive prohibition of expression. The ventral co-inducer, in the presence of overexpressed noggin, seems to generate an anterior/posterior pattern in the ventral part of the embryo comparable to that seen in neural crest of normal embryos. We suggest that the prospective neural crest is induced in normal embryos in the ectoderm that overlies the junction of the domains that express noggin and Xwnt-8. In support of this, we show animal cap explants from blastulae and gastrulae, treated with bFGF and noggin express Xslu but not NCAM although the mesoderm marker Xbra is also expressed. Explants treated with noggin alone express NCAM only. An indication that induction of the neural plate border is regulated independently of the neural plate is obtained from experiments using ultraviolet irradiation in the precleavage period. At certain doses, the cranial crest domains are not separated into lateral masses and there is a reduction in the size of the neural plate.

PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115165 ◽  
Author(s):  
Zuming Zhang ◽  
Yu Shi ◽  
Shuhua Zhao ◽  
Jiejing Li ◽  
Chaocui Li ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Shashank Gandhi ◽  
Erica J Hutchins ◽  
Krystyna Maruszko ◽  
Jong H Park ◽  
Matthew Thomson ◽  
...  

During gastrulation, neural crest cells are specified at the neural plate border, as characterized by Pax7 expression. Using single-cell RNA sequencing coupled with high-resolution in situ hybridization to identify novel transcriptional regulators, we show that chromatin remodeler Hmga1 is highly expressed prior to specification and maintained in migrating chick neural crest cells. Temporally controlled CRISPR-Cas9-mediated knockouts uncovered two distinct functions of Hmga1 in neural crest development. At the neural plate border, Hmga1 regulates Pax7-dependent neural crest lineage specification. At premigratory stages, a second role manifests where Hmga1 loss reduces cranial crest emigration from the dorsal neural tube independent of Pax7. Interestingly, this is rescued by stabilized ß-catenin, thus implicating Hmga1 as a canonical Wnt activator. Together, our results show that Hmga1 functions in a bimodal manner during neural crest development to regulate specification at the neural plate border, and subsequent emigration from the neural tube via canonical Wnt signaling.


Author(s):  
Gemma Sutton ◽  
Robert N. Kelsh ◽  
Steffen Scholpp

The neural crest (NC) is a multipotent cell population in vertebrate embryos with extraordinary migratory capacity. The NC is crucial for vertebrate development and forms a myriad of cell derivatives throughout the body, including pigment cells, neuronal cells of the peripheral nervous system, cardiomyocytes and skeletogenic cells in craniofacial tissue. NC induction occurs at the end of gastrulation when the multipotent population of NC progenitors emerges in the ectodermal germ layer in the neural plate border region. In the process of NC fate specification, fate-specific markers are expressed in multipotent progenitors, which subsequently adopt a specific fate. Thus, NC cells delaminate from the neural plate border and migrate extensively throughout the embryo until they differentiate into various cell derivatives. Multiple signalling pathways regulate the processes of NC induction and specification. This review explores the ongoing role of the Wnt/β-catenin signalling pathway during NC development, focusing on research undertaken in the Teleost model organism, zebrafish (Danio rerio). We discuss the function of the Wnt/β-catenin signalling pathway in inducing the NC within the neural plate border and the specification of melanocytes from the NC. The current understanding of NC development suggests a continual role of Wnt/β-catenin signalling in activating and maintaining the gene regulatory network during NC induction and pigment cell specification. We relate this to emerging models and hypotheses on NC fate restriction. Finally, we highlight the ongoing challenges facing NC research, current gaps in knowledge, and this field’s potential future directions.


2009 ◽  
Vol 238 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Minh-Thanh Nguyen ◽  
Jianjian Zhu ◽  
Eiichiro Nakamura ◽  
Xiaozhong Bao ◽  
Susan Mackem

2020 ◽  
Vol 11 ◽  
Author(s):  
Ankita Thawani ◽  
Andrew K. Groves

The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.


Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2873-2882 ◽  
Author(s):  
R.A. Cornell ◽  
J.S. Eisen

We examined the role of Delta signaling in specification of two derivatives in zebrafish neural plate: Rohon-Beard spinal sensory neurons and neural crest. deltaA-expressing Rohon-Beard neurons are intermingled with premigratory neural crest cells in the trunk lateral neural plate. Embryos homozygous for a point mutation in deltaA, or with experimentally reduced delta signalling, have supernumerary Rohon-Beard neurons, reduced trunk-level expression of neural crest markers and lack trunk neural crest derivatives. Fin mesenchyme, a putative trunk neural crest derivative, is present in deltaA mutants, suggesting it segregates from other neural crest derivatives as early as the neural plate stage. Cranial neural crest derivatives are also present in deltaA mutants, revealing a genetic difference in regulation of trunk and cranial neural crest development.


2014 ◽  
Vol 25 (3) ◽  
pp. 347-355 ◽  
Author(s):  
Laura Kerosuo ◽  
Marianne E. Bronner

Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein.


2021 ◽  
Vol 22 (19) ◽  
pp. 10437
Author(s):  
Helen M. Bellchambers ◽  
Kristen S. Barratt ◽  
Koula E. M. Diamand ◽  
Ruth M. Arkell

The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is considered a core component of the vertebrate gene regulatory network that specifies neural crest fate at the neural plate border. In mouse embryos, however, Zic1 mutation does not cause neural crest defects. Instead, we and others have shown that murine Zic2 and Zic5 mutate to give a neural crest phenotype. Here, we extend this knowledge by demonstrating that murine Zic3 is also required for, and co-operates with, Zic2 and Zic5 during mammalian neural crest specification. At the murine neural plate border (a region of high canonical WNT activity) ZIC2, ZIC3, and ZIC5 function as transcription factors to jointly activate the Foxd3 specifier gene. This function is promoted by SUMOylation of the ZIC proteins at a conserved lysine immediately N-terminal of the ZIC zinc finger domain. In contrast, in the lateral regions of the neurectoderm (a region of low canonical WNT activity) basal ZIC proteins act as co-repressors of WNT/TCF-mediated transcription. Our work provides a mechanism by which mammalian neural crest specification is restricted to the neural plate border. Furthermore, given that WNT signaling and SUMOylation are also features of non-mammalian neural crest specification, it suggests that mammalian neural crest induction shares broad conservation, but altered molecular detail, with chicken, zebrafish, and Xenopus neural crest induction.


2020 ◽  
Vol 15 (3) ◽  
pp. 776-788 ◽  
Author(s):  
Gerson Shigeru Kobayashi ◽  
Camila Manso Musso ◽  
Danielle de Paula Moreira ◽  
Giovanna Pontillo-Guimarães ◽  
Gabriella Shih Ping Hsia ◽  
...  

2021 ◽  
Author(s):  
Ruth Williams ◽  
Martyna Lukoseviciute ◽  
Tatjana Sauka-Spengler ◽  
Marianne E Bronner

The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harbouring neural crest and cranial placode progenitors. Here we profile avian epiblast cells as a function of time using single-cell RNA-seq to define transcriptional changes in the emerging ‘neural plate border’. The results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridisation. Developmental trajectory analysis shows that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined lineages.


Sign in / Sign up

Export Citation Format

Share Document