Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells

Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 825-837 ◽  
Author(s):  
Y.M. Lee ◽  
N. Osumi-Yamashita ◽  
Y. Ninomiya ◽  
C.K. Moon ◽  
U. Eriksson ◽  
...  

This study investigates the migration patterns of cranial neural crest cells in retinoic acid (RA)-treated rat embryos using DiI labeling. Wistar-Imamichi rat embryos were treated at the early (9.0 days post coitum, d.p.c.) and late (9.5 d.p.c.) neural plate stages with all-trans RA (2 × 10(−7) M) for 6 hours and further cultured in an RA-free medium. RA exposure stage dependently induced two typical craniofacial abnormalities; that is, at 9.0 d.p.c. it reduced the size and shape of the first branchial arch to those of the second arch, whereas, in contrast, at 9.5 d.p.c. it induced fusion of the first and second branchial arches. Early-stage treatment induced an ectopic migration of the anterior hindbrain (rhombomeres (r) 1 and 2) crest cells; they ectopically distributed in the second branchial arch and acousticofacial ganglion, as well as in their original destination, i.e., the first arch and trigeminal ganglion. In contrast, late-stage treatment did not disturb the segmental migration pattern of hindbrain crest cells even though it induced the fused branchial arch (FBA); labeled crest cells from the anterior hindbrain populated the anterior half of the FBA and those from the preotic hindbrain (r3 and r4) occupied its posterior half. In control embryos, cellular retinoic acid binding protein I (CRABP I) was strongly expressed in the second branchial arch, r4 and r6, while weakly in the first arch and r1-3. CRABP I was upregulated by the early-stage treatment in the first branchial arch and related rhombomeres, while its expression was not correspondingly changed by the late-stage treatment. Moreover, whole-mount neurofilament staining showed that, in early-RA-treated embryos, the typical structure of the trigeminal ganglion vanished, whereas the late-stage-treated embryos showed the feature of the trigeminal ganglion to be conserved, although it fused with the acousticofacial ganglion. Thus, from the standpoints of morphology, cell lineages and molecular markers, it seems likely that RA alters the regional identity of the hindbrain crest cells, which may correspond to the transformation of the hindbrain identity in RA-treated mouse embryos (Marshall et al., Nature 360, 737–741, 1992).

Development ◽  
1996 ◽  
Vol 123 (1) ◽  
pp. 329-344 ◽  
Author(s):  
T.F. Schilling ◽  
T. Piotrowski ◽  
H. Grandel ◽  
M. Brand ◽  
C.P. Heisenberg ◽  
...  

Jaws and branchial arches together are a basic, segmented feature of the vertebrate head. Seven arches develop in the zebrafish embryo (Danio rerio), derived largely from neural crest cells that form the cartilaginous skeleton. In this and the following paper we describe the phenotypes of 109 arch mutants, focusing here on three classes that affect the posterior pharyngeal arches, including the hyoid and five gill-bearing arches. In lockjaw, the hyoid arch is strongly reduced and subsets of branchial arches do not develop. Mutants of a large second class, designated the flathead group, lack several adjacent branchial arches and their associated cartilages. Five alleles at the flathead locus all lead to larvae that lack arches 4–6. Among 34 other flathead group members complementation tests are incomplete, but at least six unique phenotypes can be distinguished. These all delete continuous stretches of adjacent branchial arches and unpaired cartilages in the ventral midline. Many show cell death in the midbrain, from which some neural crest precursors of the arches originate. lockjaw and a few mutants in the flathead group, including pistachio, affect both jaw cartilage and pigmentation, reflecting essential functions of these genes in at least two neural crest lineages. Mutants of a third class, including boxer, dackel and pincher, affect pectoral fins and axonal trajectories in the brain, as well as the arches. Their skeletal phenotypes suggest that they disrupt cartilage morphogenesis in all arches. Our results suggest that there are sets of genes that: (1) specify neural crest cells in groups of adjacent head segments, and (2) function in common genetic pathways in a variety of tissues including the brain, pectoral fins and pigment cells as well as pharyngeal arches.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 75-85 ◽  
Author(s):  
K. Niederreither ◽  
J. Vermot ◽  
B. Schuhbaur ◽  
P. Chambon ◽  
P. Dolle

Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444–448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2−/− embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.


Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Y. Chai ◽  
X. Jiang ◽  
Y. Ito ◽  
P. Bringas ◽  
J. Han ◽  
...  

Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.


1997 ◽  
Vol 3 (S2) ◽  
pp. 177-178
Author(s):  
M. Monteagudo de la Rosa ◽  
M. González-Santander Martínez ◽  
G. Martinez Cuadrado ◽  
R. González Santander

Just after neural fold fusion to form the neural tube, neural crest cells detach from the neural crest, a transient structure located in the dorsal region of the neural tube. Neural crest cells migrate and differentiate into many structures and cells. But the underlying controls of this detachment and initiation of emigration are unknown. Neural crest cells are usually not morphologically distinct from the adjacent neural epithelium (neural tube) and epidermal ectoderm (epiblast) flanking them. We are combining morphological and immunohistochemical approaches to study neural crest cells in their early stage of detachment from the neural crest.Hamburger and Hamilton (1951) stages 9 to 12 White Leghorn chick embryos. Fixation in 2.5% glutaraldehyde - 0.5% tanic acid and postfixation in 1% osmium tetroxide. Embryos contrasted in bloc using uranyl acetate and embedded in araldite. Semithin transversal sections stained with toluidine blue for light microscopy. Ultrathin sections contrasted with lead citrate.


1992 ◽  
Vol 37 (1-2) ◽  
pp. 13-23 ◽  
Author(s):  
Malcolm Maden ◽  
Claire Horton ◽  
Anthony Graham ◽  
Lisa Leonard ◽  
John Pizzey ◽  
...  

2018 ◽  
Vol 433 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Rosa A. Uribe ◽  
Stephanie S. Hong ◽  
Marianne E. Bronner

2017 ◽  
Author(s):  
Miriam A. Genuth ◽  
Christopher D.C. Allen ◽  
Takashi Mikawa ◽  
Orion D. Weiner

SummaryIn vivo quantitative imaging reveals that chick cranial neural crest cells throughout the migratory stream are morphologically polarized and migrate by progressively refining the polarity of their protrusions.AbstractTo move directionally, cells can bias the generation of protrusions or select among randomly generated protrusions. Here we use 3D two-photon imaging of chick branchial arch 2 directed neural crest cells to probe how these mechanisms contribute to directed movement, whether a subset or the majority of cells polarize during movement, and how the different classes of protrusions relate to one another. We find that cells throughout the stream are morphologically polarized along the direction of overall stream movement and that there is a progressive sharpening of the morphological polarity program. Neural crest cells have weak spatial biases in filopodia generation and lifetime. Local bursts of filopodial generation precede the generation of larger protrusions. These larger protrusions are more spatially biased than the filopodia, and the subset of protrusions that power motility are the most polarized of all. Orientation rather than position is the best correlate of the protrusions that are selected for cell movement. This progressive polarity refinement strategy may enable neural crest cells to efficiently explore their environment and migrate accurately in the face of noisy guidance cues.


Sign in / Sign up

Export Citation Format

Share Document