Both the paired domain and homeodomain are required for in vivo function of Drosophila Paired

Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2709-2718 ◽  
Author(s):  
P. Miskiewicz ◽  
D. Morrissey ◽  
Y. Lan ◽  
L. Raj ◽  
S. Kessler ◽  
...  

Drosophila paired, a homolog of mammalian Pax-3, is key to the coordinated regulation of segment-polarity genes during embryogenesis. The paired gene and its homologs are unusual in encoding proteins with two DNA-binding domains, a paired domain and a homeodomain. We are using an in vivo assay to dissect the functions of the domains of this type of molecule. In particular, we are interested in determining whether one or both DNA-binding activities are required for individual in vivo functions of Paired. We constructed point mutants in each domain designed to disrupt DNA binding and tested the mutants with ectopic expression assays in Drosophila embryos. Mutations in either domain abolished the normal regulation of the target genes engrailed, hedgehog, gooseberry and even-skipped, suggesting that these in vivo functions of Paired require DNA binding through both domains rather than either domain alone. However, when the two mutant proteins were placed in the same embryo, Paired function was restored, indicating that the two DNA-binding activities need not be present in the same molecule. Quantitation of this effect shows that the paired domain mutant has a dominant-negative effect consistent with the observations that Paired protein can bind DNA as a dimer.

Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1455-1462
Author(s):  
José L Barra ◽  
Mario R Mautino ◽  
Alberto L Rosa

eth-1r a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48 → N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1  +/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1  +/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1  + and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1  +/eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1  +/eth-1r AdoMet synthetase molecules.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 875
Author(s):  
Karlijn Pellikaan ◽  
Geeske M. van Woerden ◽  
Lotte Kleinendorst ◽  
Anna G. W. Rosenberg ◽  
Bernhard Horsthemke ◽  
...  

Prader–Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome 15q11.2-13. Patients with Prader–Willi-like syndrome (PWLS) display features of the PWS phenotype without a classical PWS genetic defect. We describe a 46-year-old patient with PWLS, including hypotonia, intellectual disability, hyperphagia, and pituitary hormone deficiencies. Routine genetic tests for PWS were normal, but a homozygous missense variant NM_003097.3(SNRPN):c.193C>T, p.(Arg65Trp) was identified. Single nucleotide polymorphism array showed several large regions of homozygosity, caused by high-grade consanguinity between the parents. Our functional analysis, the ‘Pipeline for Rapid in silico, in vivo, in vitro Screening of Mutations’ (PRiSM) screen, showed that overexpression of SNRPN-p.Arg65Trp had a dominant negative effect, strongly suggesting pathogenicity. However, it could not be confirmed that the variant was responsible for the phenotype of the patient. In conclusion, we present a unique homozygous missense variant in SNURF-SNRPN in a patient with PWLS. We describe the diagnostic trajectory of this patient and the possible contributors to her phenotype in light of the current literature on the genotype–phenotype relationship in PWS.


2010 ◽  
Vol 31 (1) ◽  
pp. 133-133
Author(s):  
Sumito Dateki ◽  
Kitaro Kosaka ◽  
Kosei Hasegawa ◽  
Hiroyuki Tanaka ◽  
Noriyuki Azuma ◽  
...  

ABSTRACT Context Although recent studies have suggested a positive role of OTX2 in pituitary as well as ocular development and function, detailed pituitary phenotypes in OTX2 mutations and OTX2 target genes for pituitary function other than HESX1 and POU1F1 remain to be determined. Objective We aimed to examine such unresolved issues. Subjects We studied 94 Japanese patients with various ocular or pituitary abnormalities. Results We identified heterozygous p.K74fsX103 in case 1, p.A72fsX86 in case 2, p.G188X in two unrelated cases (3 and 4), and a 2,860,561-bp microdeletion involving OTX2 in case 5. Clinical studies revealed isolated GH deficiency in cases 1 and 5; combined pituitary hormone deficiency in case 3; abnormal pituitary structures in cases 1, 3, and 5; and apparently normal pituitary function in cases 2 and 4, together with ocular anomalies in cases 1-5. The wild-type Orthodenticle homeobox 2 (OTX2) protein transactivated the GNRH1 promoter as well as the HESX1, POU1F1, and IRBP (interstitial retinoid-binding protein) promoters, whereas the p.K74fsX103-OTX2 and p.A72fsX86-OTX2 proteins had no transactivation functions and the p.G188X-OTX2 protein had reduced (∼50%) transactivation functions for the four promoters, with no dominant-negative effect. cDNA screening identified positive OTX2 expression in the hypothalamus. Conclusions The results imply that OTX2 mutations are associated with variable pituitary phenotype, with no genotype-phenotype correlations, and that OTX2 can transactivate GNRH1 as well as HESX1 and POU1F1.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2673-2685 ◽  
Author(s):  
C. Bertuccioli ◽  
L. Fasano ◽  
S. Jun ◽  
S. Wang ◽  
G. Sheng ◽  
...  

The Drosophila pair-rule gene paired is required for the correct expression of the segment polarity genes wingless, engrailed and gooseberry. It encodes a protein containing three conserved motifs: a homeodomain (HD), a paired domain (PD) and a PRD (His/Pro) repeat. We use a rescue assay in which paired (or a mutated version of paired in which the functions of the conserved motifs have been altered) is expressed under the control of its own promoter, in the absence of endogenous paired, to dissect the Paired protein in vivo. We show that both the HD and the N- terminal subdomain of the PD (PAI domain) are absolutely required within the same molecule for normal paired function. In contrast, the conserved C-terminal subdomain of the PD (RED domain) appears to be dispensable. Furthermore, although a mutation abolishing the ability of the homeodomain to dimerize results in an impaired Paired molecule, this molecule is nonetheless able to mediate a high degree of rescue. Finally, a paired transgene lacking the PRD repeat is functionally impaired, but still able to rescue to viability. We conclude that, while Prd can use its DNA-binding domains combinatorially in order to achieve different DNA-binding specificities, its principal binding mode requires a cooperative interaction between the PAI domain and the homeodomain.


2004 ◽  
Vol 24 (8) ◽  
pp. 3227-3237 ◽  
Author(s):  
Kazuhiro Maki ◽  
Honoka Arai ◽  
Kazuo Waga ◽  
Ko Sasaki ◽  
Fumihiko Nakamura ◽  
...  

ABSTRACT TEL is an ETS family transcription factor that possesses multiple putative mitogen-activated protein kinase phosphorylation sites. We here describe the functional regulation of TEL via ERK pathways. Overexpressed TEL becomes phosphorylated in vivo by activated ERK. TEL is also directly phosphorylated in vitro by ERK. The inducible phosphorylation sites are Ser213 and Ser257. TEL binds to a common docking domain in ERK. In vivo ERK-dependent phosphorylation reduces trans-repressional and DNA-binding abilities of TEL for ETS-binding sites. A mutant carrying substituted glutamates on both Ser213 and Ser257 functionally mimics hyperphosphorylated TEL and also shows a dominant-negative effect on TEL-induced transcriptional suppression. Losing DNA-binding affinity through phosphorylation but heterodimerizing with unmodified TEL could be an underlying mechanism. Moreover, the glutamate mutant dominantly interferes with TEL-induced erythroid differentiation in MEL cells and growth suppression in NIH 3T3 cells. Finally, endogenous TEL is dephosphorylated in parallel with ERK inactivation in differentiating MEL cells and is phosphorylated through ERK activation in Ras-transformed NIH 3T3 cells. These data indicate that TEL is a constituent downstream of ERK in signal transduction systems and is physiologically regulated by ERK in molecular and biological features.


2010 ◽  
Vol 95 (2) ◽  
pp. 756-764 ◽  
Author(s):  
Sumito Dateki ◽  
Kitaro Kosaka ◽  
Kosei Hasegawa ◽  
Hiroyuki Tanaka ◽  
Noriyuki Azuma ◽  
...  

Abstract Context: Although recent studies have suggested a positive role of OTX2 in pituitary as well as ocular development and function, detailed pituitary phenotypes in OTX2 mutations and OTX2 target genes for pituitary function other than HESX1 and POU1F1 remain to be determined. Objective: We aimed to examine such unresolved issues. Subjects: We studied 94 Japanese patients with various ocular or pituitary abnormalities. Results: We identified heterozygous p.K74fsX103 in case 1, p.A72fsX86 in case 2, p.G188X in two unrelated cases (3 and 4), and a 2,860,561-bp microdeletion involving OTX2 in case 5. Clinical studies revealed isolated GH deficiency in cases 1 and 5; combined pituitary hormone deficiency in case 3; abnormal pituitary structures in cases 1, 3, and 5; and apparently normal pituitary function in cases 2 and 4, together with ocular anomalies in cases 1–5. The wild-type Orthodenticle homeobox 2 (OTX2) protein transactivated the GNRH1 promoter as well as the HESX1, POU1F1, and IRBP (interstitial retinoid-binding protein) promoters, whereas the p.K74fsX103-OTX2 and p.A72fsX86-OTX2 proteins had no transactivation functions and the p.G188X-OTX2 protein had reduced (∼50%) transactivation functions for the four promoters, with no dominant-negative effect. cDNA screening identified positive OTX2 expression in the hypothalamus. Conclusions: The results imply that OTX2 mutations are associated with variable pituitary phenotype, with no genotype-phenotype correlations, and that OTX2 can transactivate GNRH1 as well as HESX1 and POU1F1.


2017 ◽  
Vol 37 (7) ◽  
Author(s):  
Emi Sasaki ◽  
Koichiro Susa ◽  
Takayasu Mori ◽  
Kiyoshi Isobe ◽  
Yuya Araki ◽  
...  

ABSTRACT Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3 −/− mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter. Immunoblots of β-Gal and LacZ staining revealed that KLHL3 was expressed in some organs, such as brain. However, the expression levels of WNK kinases were not increased in any of these organs other than the kidney, where WNK1 and WNK4 increased in KLHL3−/− mice but not in KLHL3+/− mice. KLHL3−/− mice also showed PHAII-like phenotypes, whereas KLHL3+/− mice did not. This clearly demonstrates that the heterozygous deletion of KLHL3 was not sufficient to cause PHAII, indicating that autosomal dominant type PHAII is caused by the dominant negative effect of mutant KLHL3. We further demonstrated that the dimerization of KLHL3 can explain this dominant negative effect. These findings could help us to further understand the physiological roles of KLHL3 and the pathophysiology of PHAII caused by mutant KLHL3.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 755-765 ◽  
Author(s):  
S.B. Pierce ◽  
D. Kimelman

Dorsal axis formation in the Xenopus embryo can be induced by the ectopic expression of several Wnt family members. In Drosophila, the protein encoded by the Wnt family gene, wingless, signals through a pathway that antagonizes the effects of the serine/threonine kinase zeste-white 3/shaggy. We describe the isolation and characterization of a Xenopus homolog of zeste-white 3/shaggy, Xgsk-3. A kinase-dead mutant of Xgsk-3, Xgsk-3K-->R, has a dominant negative effect and mimics the ability of Wnt to induce a secondary axis by induction of an ectopic Spemann organizer. Xgsk-3K-->R, like Wnt, induces dorsal axis formation when expressed in the deep vegetal cells, which do not contribute to the axis. These results indicate that the dorsal fate is actively repressed by Xgsk-3, which must be inactivated for dorsal axis formation to occur. Furthermore, our work suggests that the effects of Xgsk-3K-->R are mediated by an additional intercellular signal.


Sign in / Sign up

Export Citation Format

Share Document