Expression of the murine Hoxa4 gene requires both autoregulation and a conserved retinoic acid response element

Development ◽  
1998 ◽  
Vol 125 (11) ◽  
pp. 1991-1998 ◽  
Author(s):  
A.I. Packer ◽  
D.A. Crotty ◽  
V.A. Elwell ◽  
D.J. Wolgemuth

Analysis of the regulatory regions of the Hox genes has revealed a complex array of positive and negative cis-acting elements that control the spatial and temporal pattern of expression of these genes during embryogenesis. In this study we show that normal expression of the murine Hoxa4 gene during development requires both autoregulatory and retinoic acid-dependent modes of regulation. When introduced into a Hoxa4 null background, expression of a lacZ reporter gene driven by the Hoxa4 regulatory region (Hoxa4/lacZ) is either abolished or significantly reduced in all tissues at E10. 5-E12.5. Thus, the observed autoregulation of the Drosophila Deformed gene is conserved in a mouse homolog in vivo, and is reflected in a widespread requirement for positive feedback to maintain Hoxa4 expression. We also identify three potential retinoic acid response elements in the Hoxa4 5′ flanking region, one of which is identical to a well-characterized element flanking the Hoxd4 gene. Administration of retinoic acid to Hoxa4/lacZ transgenic embryos resulted in stage-dependent ectopic expression of the reporter gene in the neural tube and hindbrain. When administered to Hoxa4 null embryos, however, persistent ectopic expression was not observed, suggesting that autoregulation is required for maintenance of the retinoic acid-induced expression. Finally, mutation of the consensus retinoic acid response element eliminated the response of the reporter gene to exogenous retinoic acid, and abolished all embryonic expression in untreated embryos, with the exception of the neural tube and prevertebrae. These data add to the evidence that Hox gene expression is regulated, in part, by endogenous retinoids and autoregulatory loops.

1993 ◽  
Vol 13 (1) ◽  
pp. 257-265 ◽  
Author(s):  
H Pöpperl ◽  
M S Featherstone

Hox genes play an important role in the process of vertebrate pattern formation, and their expression is intricately regulated both temporally and spatially. All-trans-retinoic acid (RA), a physiologically active metabolite of vitamin A, affects the expression of a large number of Hox genes in vitro and in vivo. However, the regulatory mechanisms underlying the RA response of these genes have not been extensively studied, and no response element for RA receptors (RARs) has been characterized in a Hox regulatory region. The expression of murine Hox-4.2 and its human homolog, HOX4B, is increased in embryonal carcinoma (EC) cell lines upon RA treatment (M. S. Featherstone, A. Baron, S. J. Gaunt, M.-G. Mattei, and D. Duboule, Proc. Natl. Acad. Sci. USA 85:4760-4764, 1988; A. Simeone, D. Acampora, V. Nigro, A. Faiella, M. D'Esposito, A. Stornaiuolo, F. Mavilio, and E. Boncinelli, Mech. Dev. 33:215-228, 1991). Using transient expression assays, we showed that luciferase reporter gene constructs carrying genomic sequences located upstream of Hox-4.2 responded to RA in murine P19 EC cells. A 402-bp NcoI fragment was necessary for the RA responsiveness of reporter constructs. This fragment contained a regulatory element, 5'-AGGTGA(N)5AGGTCA-3', that closely resembles the consensus sequence for an RA response element. The Hox-4.2 RA response element was critical for the RA induction and specifically bound RARs. In addition, the response to RA could be inhibited by expressing a dominant negative form of RAR alpha in transfected P19 EC cells. These results suggested that Hox-4.2 is a target for RAR-mediated regulation by RA.


1993 ◽  
Vol 13 (1) ◽  
pp. 257-265 ◽  
Author(s):  
H Pöpperl ◽  
M S Featherstone

Hox genes play an important role in the process of vertebrate pattern formation, and their expression is intricately regulated both temporally and spatially. All-trans-retinoic acid (RA), a physiologically active metabolite of vitamin A, affects the expression of a large number of Hox genes in vitro and in vivo. However, the regulatory mechanisms underlying the RA response of these genes have not been extensively studied, and no response element for RA receptors (RARs) has been characterized in a Hox regulatory region. The expression of murine Hox-4.2 and its human homolog, HOX4B, is increased in embryonal carcinoma (EC) cell lines upon RA treatment (M. S. Featherstone, A. Baron, S. J. Gaunt, M.-G. Mattei, and D. Duboule, Proc. Natl. Acad. Sci. USA 85:4760-4764, 1988; A. Simeone, D. Acampora, V. Nigro, A. Faiella, M. D'Esposito, A. Stornaiuolo, F. Mavilio, and E. Boncinelli, Mech. Dev. 33:215-228, 1991). Using transient expression assays, we showed that luciferase reporter gene constructs carrying genomic sequences located upstream of Hox-4.2 responded to RA in murine P19 EC cells. A 402-bp NcoI fragment was necessary for the RA responsiveness of reporter constructs. This fragment contained a regulatory element, 5'-AGGTGA(N)5AGGTCA-3', that closely resembles the consensus sequence for an RA response element. The Hox-4.2 RA response element was critical for the RA induction and specifically bound RARs. In addition, the response to RA could be inhibited by expressing a dominant negative form of RAR alpha in transfected P19 EC cells. These results suggested that Hox-4.2 is a target for RAR-mediated regulation by RA.


Development ◽  
2001 ◽  
Vol 128 (12) ◽  
pp. 2341-2350
Author(s):  
Makoto Kobayashi ◽  
Keizo Nishikawa ◽  
Masayuki Yamamoto

Expression of gata1 is regulated through multiple cis-acting GATA motifs. To elucidate regulatory mechanisms of the gata1 gene, we have used zebrafish. To this end, we isolated and analyzed zebrafish gata1 genomic DNA, which resulted in the discovery of a novel intron that was unknown in previous analyses. This intron corresponds to the first intron of other vertebrate Gata1 genes. GFP reporter analyses revealed that this intron and a distal double GATA motif in the regulatory region are important for the regulation of zebrafish gata1 gene expression. To examine whether GATA1 regulates its own gene expression, we microinjected into embryos a GFP reporter gene linked successively to the gata1 gene regulatory region and to GATA1 mRNA. Surprisingly, ectopic expression of the reporter gene was induced at the site of GATA1 overexpression and was dependent on the distal double GATA motif. Functional domain analyses using transgenic fish lines that harbor the gata1-GFP reporter construct revealed that both the N- and C-terminal zinc-finger domains of GATA1, hence intact GATA1 function, are required for the ectopic GFP expression. These results provide the first in vivo evidence that gata1 gene expression undergoes positive autoregulation.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 543-554 ◽  
Author(s):  
S. Nonchev ◽  
C. Vesque ◽  
M. Maconochie ◽  
T. Seitanidou ◽  
L. Ariza-McNaughton ◽  
...  

The hindbrain is a segmented structure divided into repeating metameric units termed rhombomeres (r). The Hox family, vertebrate homologs of the Drosophila HOM-C homeotic selector genes, are expressed in rhombomere-restricted patterns and are believed to participate in regulating segmental identities. Krox-20, a zinc finger gene, has a highly conserved pattern of expression in r3 and r5 and is functionally required for their maintenance in mouse embryos. Krox-20 has been shown to directly regulate the Hoxb-2 gene and we wanted to determine if it was involved in regulating multiple Hox genes as a part of its functional role. Hoxa-2 is the only known paralog of Hoxb-2, and we examined the patterns of expression of the mouse Hoxa-2 gene with particular focus on r3 and r5 in wild type and Krox-20−/− mutant embryos. There was a clear loss of expression in r3, which indicated that Hoxa-2 was downstream of Krox-20. Using transgenic analysis with E. coli lacZ reporter genes we have identified and mapped an r3/r5 enhancer in the 5′ flanking region of the Hoxa-2 gene. Deletion analysis narrowed this region to an 809 bp Bg/II fragment, and in vitro binding and competition assays with bacterially expressed Krox-20 protein identified two sites within the enhancer. Mutation of these Krox-20 sites in the regulatory region specifically abolished r3/r5 activity, but did not affect neural crest and mesodermal components. This indicated that the two Krox-20 sites are required in vivo for enhancer function. Furthermore, ectopic expression of Krox-20 in r4 was able to transactivate the Hoxa 2/lacZ reporter in this rhombomere. Together our findings suggest that Krox-20 directly participates in the transcriptional regulation of Hoxa-2 during hindbrain segmentation, and is responsible for the upregulation of the r3 and r5 domains of expression of both vertebrate group 2 Hox paralogs. Therefore, the segmental phenotypes in the Krox-20 mutants are likely to reflect the role of Krox-20 in directly regulating multiple Hox genes.


2004 ◽  
Vol 383 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Laura R. HARRIS ◽  
Olli-Pekka KAMARAINEN ◽  
Minna SEVAKIVI ◽  
Gwen C. MILLER ◽  
James W. CLARKE ◽  
...  

The Col11a2 gene codes for α2(XI), a subunit of type XI collagen that is a critical component of the cartilage extracellular matrix. The 5′ regulatory region of Col11a2 was subjected to deletional analysis to detect any regulatory element in addition to the two known chondrocyte-specific enhancer elements B/C and D/E. Deletion of the region from −342 to −242 bp reduced transcriptional activity to less than 50% of wild-type, but the sequence showed no independent ability to increase transcription from a minimal promoter. When cloned downstream of the D/E enhancer, however, a subsection of the sequence nearly doubled transcriptional activity and produced an additional 3-fold activation in response to RA (retinoic acid). A 6-bp direct repeat, separated by 4 bp (a DR-4 element) near the 5′-end of this region, was found to be essential for its activity, and was further shown to bind the RA X receptor β in electrophoretic mobility-shift assays. The present study has revealed a novel RA-response element in Col11a2 that does not interact directly with the promoter, but instead requires the D/E enhancer to mediate transcriptional activation. Proteins bound at the enhancer, therefore, would be expected to affect the transcriptional response to RA. Such a system of regulation, particularly if found to be operating in other cartilage genes, could explain the conflicting responses RA produces in chondrocytes under different experimental conditions.


1999 ◽  
Vol 77 (6) ◽  
pp. 515-526 ◽  
Author(s):  
Seiko Kyakumoto ◽  
Minoru Ota ◽  
Nobuko Sato

Human salivary gland adenocarcinoma cells (HSG) express nuclear receptors, all-trans-retinoic acid (at-RA) receptors (RARs), and retinoid X/9-cis-retinoic acid (9-c-RA) receptors (RXRs). In order to investigate whether the endogenous RARs or RXRs of HSG cells can induce transcription activation, the thymidine kinase promoter (TK)-driven luciferase reporter gene containing the retinoic acid response element (RARE), of RARβ, βRARE2-TK-Luc, was transfected into HSG cells and ligand-dependent transcription activation was examined. Luciferase activity of cell lysate increased by the treatment with either at-RA or 9-c-RA. Co-transfection of RARα and (or) RXRα-expression plasmids with the reporter gene enhanced the luciferase activity, suggesting that endogenous RARs and RXRs work as ligand-dependent transfactors in HSG cells. Reverse transcriptase - polymerase chain reaction analysis revealed that HSG cells express chicken ovalbumin upstream promoter - transcription factor I (COUP-TFI). Co-transfection of COUP-TFI-expression plasmid suppressed the at-RA-induced transcription activation of the reporter gene. Similar results were shown using a chromatin-integrated reporter gene system, using a stably transfected β-RARE2-TK-β-galactosidase (β-Gal) reporter gene. The at-RA-dependent increase in the β-Gal expression was completely inhibited by COUP-TFI. The transfection of antisense oligonucleotide of COUP-TFI squelched the RA-dependent growth inhibition induced by RAR-RXR heterodimers. Conclusively, RARs and RXRs of HSG cells are functional and play roles as transactivators in at-RA-sensitive processes such as the proliferation or differentiation of cells. COUP-TFI very likely regulates these processes by repressing the functions of these transactivators.Key words: retinoic acid receptor, retinoid X receptor, COUP-transcription factor (COUP-TF), retinoic acid response element.


1989 ◽  
Vol 9 (11) ◽  
pp. 4835-4845
Author(s):  
S J Anderson ◽  
S Miyake ◽  
D Y Loh

We identified a regulatory region of the murine V beta promoter by both in vivo and in vitro analyses. The results of transient transfection assays indicated that the dominant transcription-activating element within the V beta 8.3 promoter is the palindromic motif identified previously as the conserved V beta decamer. Elimination of this element, by linear deletion or specific mutation, reduced transcriptional activity from this promoter by 10-fold. DNase I footprinting, gel mobility shift, and methylation interference assays confirmed that the palindrome acts as the binding site of a specific nuclear factor. In particular, the V beta promoter motif functioned in vitro as a high-affinity site for a previously characterized transcription activator, ATF. A consensus cyclic AMP response element (CRE) but not a consensus AP-1 site, can substitute for the decamer in vivo. These data suggest that cyclic AMP response element-binding protein (ATF/CREB) or related proteins activate V beta transcription.


Sign in / Sign up

Export Citation Format

Share Document