Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20

Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 543-554 ◽  
Author(s):  
S. Nonchev ◽  
C. Vesque ◽  
M. Maconochie ◽  
T. Seitanidou ◽  
L. Ariza-McNaughton ◽  
...  

The hindbrain is a segmented structure divided into repeating metameric units termed rhombomeres (r). The Hox family, vertebrate homologs of the Drosophila HOM-C homeotic selector genes, are expressed in rhombomere-restricted patterns and are believed to participate in regulating segmental identities. Krox-20, a zinc finger gene, has a highly conserved pattern of expression in r3 and r5 and is functionally required for their maintenance in mouse embryos. Krox-20 has been shown to directly regulate the Hoxb-2 gene and we wanted to determine if it was involved in regulating multiple Hox genes as a part of its functional role. Hoxa-2 is the only known paralog of Hoxb-2, and we examined the patterns of expression of the mouse Hoxa-2 gene with particular focus on r3 and r5 in wild type and Krox-20−/− mutant embryos. There was a clear loss of expression in r3, which indicated that Hoxa-2 was downstream of Krox-20. Using transgenic analysis with E. coli lacZ reporter genes we have identified and mapped an r3/r5 enhancer in the 5′ flanking region of the Hoxa-2 gene. Deletion analysis narrowed this region to an 809 bp Bg/II fragment, and in vitro binding and competition assays with bacterially expressed Krox-20 protein identified two sites within the enhancer. Mutation of these Krox-20 sites in the regulatory region specifically abolished r3/r5 activity, but did not affect neural crest and mesodermal components. This indicated that the two Krox-20 sites are required in vivo for enhancer function. Furthermore, ectopic expression of Krox-20 in r4 was able to transactivate the Hoxa 2/lacZ reporter in this rhombomere. Together our findings suggest that Krox-20 directly participates in the transcriptional regulation of Hoxa-2 during hindbrain segmentation, and is responsible for the upregulation of the r3 and r5 domains of expression of both vertebrate group 2 Hox paralogs. Therefore, the segmental phenotypes in the Krox-20 mutants are likely to reflect the role of Krox-20 in directly regulating multiple Hox genes.

Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4349-4358 ◽  
Author(s):  
J. Charite ◽  
W. de Graaff ◽  
D. Consten ◽  
M.J. Reijnen ◽  
J. Korving ◽  
...  

Studies of pattern formation in the vertebrate central nervous system indicate that anteroposterior positional information is generated in the embryo by signalling gradients of an as yet unknown nature. We searched for transcription factors that transduce this information to the Hox genes. Based on the assumption that the activity levels of such factors might vary with position along the anteroposterior axis, we devised an in vivo assay to detect responsiveness of cis-acting sequences to such differentially active factors. We used this assay to analyze a Hoxb8 regulatory element, and detected the most pronounced response in a short stretch of DNA containing a cluster of potential CDX binding sites. We show that differentially expressed DNA binding proteins are present in gastrulating embryos that bind to these sites in vitro, that cdx gene products are among these, and that binding site mutations that abolish binding of these proteins completely destroy the ability of the regulatory element to drive regionally restricted expression in the embryo. Finally, we show that ectopic expression of cdx gene products anteriorizes expression of reporter transgenes driven by this regulatory element, as well as that of the endogenous Hoxb8 gene, in a manner that is consistent with them being essential transducers of positional information. These data suggest that, in contrast to Drosophila Caudal, vertebrate cdx gene products transduce positional information directly to the Hox genes, acting through CDX binding sites in their enhancers. This may represent the ancestral mode of action of caudal homologues, which are involved in anteroposterior patterning in organisms with widely divergent body plans and modes of development.


1987 ◽  
Vol 7 (9) ◽  
pp. 3252-3259
Author(s):  
T Prezant ◽  
K Pfeifer ◽  
L Guarente

Regulation of the CYC7 gene of Saccharomyces cerevisiae, encoding iso-2-cytochrome c, was studied. Expression was induced about 20-fold by heme and derepressed 4- to 8-fold by a shift from glucose medium to one containing a nonfermentable carbon source. Deletion analysis showed that induction by heme depends upon sequences between -250 and -228 (from the coding sequence) and upon the HAP1 activator gene, previously shown to be required for CYC1 expression (L. Guarente et al., Cell 36:503-511, 1984). Thus, HAP1 coordinates expression of CYC7 and CYC1, the two genes encoding isologs of cytochrome c in S. cerevisiae. HAP1-18, a mutant allele of HAP1, which increased CYC7 expression more than 10-fold, also acted through sequences between -250 and -228. In vitro binding studies showed that the HAP1 product binds to these sequences (see also K. Pfeifer, T. Prezant, and L. Guarente, Cell 49:19-28, 1987) and an additional factor binds to distal sequences that lie between -201 and -165. This latter site augmented CYC7 expression in vivo. Derepression of CYC7 expression in a medium containing nonfermentable carbon sources depended upon sequences between -354 and -295. The interplay of these multiple sites and the factors that bind to them are discussed.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Jingyu Diao ◽  
Catrien Bouwman ◽  
Donghong Yan ◽  
Jing Kang ◽  
Anand K. Katakam ◽  
...  

ABSTRACTMurein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins inEscherichia coli. Their roles in cell-envelope integrity have been documented inE. colilaboratory strains, and while Lpp has been linked to serum resistancein vitro, the underlying mechanism has not been established. Here,lppandpalmutants of uropathogenicE. colistrain CFT073 showed reduced survival in a mouse bacteremia model, but only thelppmutant was sensitive to serum killingin vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysisin vitroand complement-mediated clearancein vivo. Compared to the wild-type strain, thelppmutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenicE. coliisolates.IMPORTANCEUropathogenicE. coli(UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistancein vitroand for complement-mediated bacterial clearancein vivo. This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of “group 2” capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis.


Microbiology ◽  
2020 ◽  
Vol 166 (6) ◽  
pp. 546-553 ◽  
Author(s):  
Satya Deo Pandey ◽  
Diamond Jain ◽  
Neeraj Kumar ◽  
Anwesha Adhikary ◽  
Ganesh Kumar N. ◽  
...  

Mycobacterial peptidoglycan (PG) is an unsolved puzzle due to its complex structure and involvement of multiple enzymes in the process of its remodelling. dd-Carboxypeptidases are low molecular mass penicillin-binding proteins (LMM-PBPs) that catalyzes the cleavage of terminal d-Ala of muramyl pentapeptide branches and thereby helps in the PG remodelling process. Here, we have assigned the function of a putative LMM-PBP, MSMEG_2432 of Mycobacterium smegmatis , by showing that it exhibits both dd-CPase and β-lactamase activities. Like conventional dd-CPase (PBP5 from E. coli), upon ectopic complementation in a deformed seven PBP deletion mutant of E. coli, MSMEG_2432 has manifested its ability to restore ~75 % of the cell population to their normal rod shape. Further, in vitro dd-CPase assay has confirmed its ability to release terminal d-Ala from the synthetic tripeptide and the peptidoglycan mimetic pentapeptide substrates ending with d-Ala-d-Ala. Also, elevated resistance against penicillins and cephalosporins upon ectopic expression of MSMEG_2432 suggests the presence of β-lactamase activity, which is further confirmed in vitro through nitrocefin hydrolysis assay. Moreover, it is found apparent that D169A substitution in MSMEG_2432 influences both of its in vivo and in vitro dd-CPase and β-lactamase activities. Thus, we infer that MSMEG_2432 is a dual function enzyme that possesses both dd-CPase and β-lactamase activities.


Development ◽  
1998 ◽  
Vol 125 (11) ◽  
pp. 1991-1998 ◽  
Author(s):  
A.I. Packer ◽  
D.A. Crotty ◽  
V.A. Elwell ◽  
D.J. Wolgemuth

Analysis of the regulatory regions of the Hox genes has revealed a complex array of positive and negative cis-acting elements that control the spatial and temporal pattern of expression of these genes during embryogenesis. In this study we show that normal expression of the murine Hoxa4 gene during development requires both autoregulatory and retinoic acid-dependent modes of regulation. When introduced into a Hoxa4 null background, expression of a lacZ reporter gene driven by the Hoxa4 regulatory region (Hoxa4/lacZ) is either abolished or significantly reduced in all tissues at E10. 5-E12.5. Thus, the observed autoregulation of the Drosophila Deformed gene is conserved in a mouse homolog in vivo, and is reflected in a widespread requirement for positive feedback to maintain Hoxa4 expression. We also identify three potential retinoic acid response elements in the Hoxa4 5′ flanking region, one of which is identical to a well-characterized element flanking the Hoxd4 gene. Administration of retinoic acid to Hoxa4/lacZ transgenic embryos resulted in stage-dependent ectopic expression of the reporter gene in the neural tube and hindbrain. When administered to Hoxa4 null embryos, however, persistent ectopic expression was not observed, suggesting that autoregulation is required for maintenance of the retinoic acid-induced expression. Finally, mutation of the consensus retinoic acid response element eliminated the response of the reporter gene to exogenous retinoic acid, and abolished all embryonic expression in untreated embryos, with the exception of the neural tube and prevertebrae. These data add to the evidence that Hox gene expression is regulated, in part, by endogenous retinoids and autoregulatory loops.


2008 ◽  
Vol 190 (10) ◽  
pp. 3434-3443 ◽  
Author(s):  
Umender K. Sharma ◽  
Dipankar Chatterji

ABSTRACT Anti-sigma factors Escherichia coli Rsd and bacteriophage T4 AsiA bind to the essential housekeeping sigma factor, σ70, of E. coli. Though both factors are known to interact with the C-terminal region of σ70, the physiological consequences of these interactions are very different. This study was undertaken for the purpose of deciphering the mechanisms by which E. coli Rsd and bacteriophage T4 AsiA inhibit or modulate the activity of E. coli RNA polymerase, which leads to the inhibition of E. coli cell growth to different amounts. It was found that AsiA is the more potent inhibitor of in vivo transcription and thus causes higher inhibition of E. coli cell growth. Measurements of affinity constants by surface plasmon resonance experiments showed that Rsd and AsiA bind to σ70 with similar affinity. Data obtained from in vivo and in vitro binding experiments clearly demonstrated that the major difference between AsiA and Rsd is the ability of AsiA to form a stable ternary complex with RNA polymerase. The binding patterns of AsiA and Rsd with σ70 studied by using the yeast two-hybrid system revealed that region 4 of σ70 is involved in binding to both of these anti-sigma factors; however, Rsd interacts with other regions of σ70 as well. Taken together, these results suggest that the higher inhibition of E. coli growth by AsiA expression is probably due to the ability of the AsiA protein to trap the holoenzyme RNA polymerase rather than its higher binding affinity to σ70.


Development ◽  
2000 ◽  
Vol 127 (1) ◽  
pp. 155-166 ◽  
Author(s):  
E. Ferretti ◽  
H. Marshall ◽  
H. Popperl ◽  
M. Maconochie ◽  
R. Krumlauf ◽  
...  

Direct auto- and cross-regulatory interactions between Hox genes serve to establish and maintain segmentally restricted patterns in the developing hindbrain. Rhombomere r4-specific expression of both Hoxb1 and Hoxb2 depends upon bipartite cis Hox response elements for the group 1 paralogous proteins, Hoxal and Hoxbl. The DNA-binding ability and selectivity of these proteins depend upon the formation of specific heterodimeric complexes with members of the PBC homeodomain protein family (Pbx genes). The r4 enhancers from Hoxb1 and Hoxb2 have the same activity, but differ with respect to the number and organisation of bipartite Pbx/Hox (PH) sites required, suggesting the intervention of other components/sequences. We report here that another family of homeodomain proteins (TALE, Three-Amino acids-Loop-Extension: Prep1, Meis, HTH), capable of dimerizing with Pbx/EXD, is involved in the mechanisms of r4-restricted expression. We show that: (1) the r4-specific Hoxb1 and Hoxb2 enhancers are complex elements containing separate PH and Prep/Meis (PM) sites; (2) the PM site of the Hoxb2, but not Hoxb1, enhancer is essential in vivo for r4 expression and also influences other sites of expression; (3) both PM and PH sites are required for in vitro binding of Prepl-Pbx and formation and binding of a ternary Hoxbl-Pbxla (or 1b)-Prepl complex. (4) A similar ternary association forms in nuclear extracts from embryonal P19 cells, but only upon retinoic acid induction. This requires synthesis of Hoxbl and also contains Pbx with either Prepl or Meisl. Together these findings highlight the fact that PM sites are found in close proximity to bipartite PH motifs in several Hox responsive elements shown to be important in vivo and that such sites play an essential role in potentiating regulatory activity in combination with the PH motifs.


1987 ◽  
Vol 7 (9) ◽  
pp. 3252-3259 ◽  
Author(s):  
T Prezant ◽  
K Pfeifer ◽  
L Guarente

Regulation of the CYC7 gene of Saccharomyces cerevisiae, encoding iso-2-cytochrome c, was studied. Expression was induced about 20-fold by heme and derepressed 4- to 8-fold by a shift from glucose medium to one containing a nonfermentable carbon source. Deletion analysis showed that induction by heme depends upon sequences between -250 and -228 (from the coding sequence) and upon the HAP1 activator gene, previously shown to be required for CYC1 expression (L. Guarente et al., Cell 36:503-511, 1984). Thus, HAP1 coordinates expression of CYC7 and CYC1, the two genes encoding isologs of cytochrome c in S. cerevisiae. HAP1-18, a mutant allele of HAP1, which increased CYC7 expression more than 10-fold, also acted through sequences between -250 and -228. In vitro binding studies showed that the HAP1 product binds to these sequences (see also K. Pfeifer, T. Prezant, and L. Guarente, Cell 49:19-28, 1987) and an additional factor binds to distal sequences that lie between -201 and -165. This latter site augmented CYC7 expression in vivo. Derepression of CYC7 expression in a medium containing nonfermentable carbon sources depended upon sequences between -354 and -295. The interplay of these multiple sites and the factors that bind to them are discussed.


1999 ◽  
Vol 38 (04) ◽  
pp. 115-119
Author(s):  
N. Oriuchi ◽  
S. Sugiyama ◽  
M. Kuroki ◽  
Y. Matsuoka ◽  
S. Tanada ◽  
...  

Summary Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tclabeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 107 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tcactivity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Sign in / Sign up

Export Citation Format

Share Document