The beta-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene lin-39 during Caenorhabditis elegans vulval development

Development ◽  
1998 ◽  
Vol 125 (18) ◽  
pp. 3667-3680 ◽  
Author(s):  
D.M. Eisenmann ◽  
J.N. Maloof ◽  
J.S. Simske ◽  
C. Kenyon ◽  
S.K. Kim

In C. elegans, the epithelial Pn.p cells adopt either a vulval precursor cell fate or fuse with the surrounding hypodermis (the F fate). Our results suggest that a Wnt signal transduced through a pathway involving the beta-catenin homolog BAR-1 controls whether P3.p through P8.p adopt the vulval precursor cell fate. In bar-1 mutants, P3.p through P8.p can adopt F fates instead of vulval precursor cell fates. The Wnt/bar-1 signaling pathway acts by regulating the expression of the Hox gene lin-39, since bar-1 is required for LIN-39 expression and forced lin-39 expression rescues the bar-1 mutant phenotype. LIN-39 activity is also regulated by the anchor cell signal/let-23 receptor tyrosine kinase/let-60 Ras signaling pathway. Our genetic and molecular experiments show that the vulval precursor cells can integrate the input from the BAR-1 and LET-60 Ras signaling pathways by coordinately regulating activity of the common target LIN-39 Hox.

Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5047-5058 ◽  
Author(s):  
M. Wang ◽  
P.W. Sternberg

In C. elegans, the descendants of the 1 degrees vulval precursor cell (VPC) establish a fixed spatial pattern of two different cell fates: E-F-F-E. The two inner granddaughters attach to the somatic gonadal anchor cell (AC) and generate four vulF cells, while the two outer granddaughters produce four vulE progeny. zmp-1::GFP, a molecular marker that distinguishes these two fates, is expressed in vulE cells, but not vulF cells. We demonstrate that a short-range AC signal is required to ensure that the pattern of vulE and vulF fates is properly established. In addition, signaling between the inner and outer 1 degrees VPC descendants, as well as intrinsic polarity of the 1 degrees VPC daughters, is involved in the asymmetric divisions of the 1 degrees VPC daughters and the proper orientation of the outcome. Finally, we provide evidence that RAS signaling is used during this new AC signaling event, while the Wnt receptor LIN-17 appears to mediate signaling between the inner and outer 1 degrees VPC descendants.


Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 181-190 ◽  
Author(s):  
J.N. Maloof ◽  
C. Kenyon

The Ras signaling pathway specifies a variety of cell fates in many organisms. However, little is known about the genes that function downstream of the conserved signaling cassette, or what imparts the specificity necessary to cause Ras activation to trigger different responses in different tissues. In C. elegans, activation of the Ras pathway induces cells in the central body region to generate the vulva. Vulval induction takes place in the domain of the Hox gene lin-39. We have found that lin-39 is absolutely required for Ras signaling to induce vulval development. During vulval induction, the Ras pathway, together with basal lin-39 activity, up-regulates lin-39 expression in vulval precursor cells. We find that if lin-39 function is absent at this time, no vulval cell divisions occur. Furthermore, if lin-39 is replaced with the posterior Hox gene mab-5, then posterior structures are induced instead of a vulva. Our findings suggest that in addition to permitting vulval cell divisions to occur, lin-39 is also required to specify the outcome of Ras signaling by selectively activating vulva-specific genes.


Development ◽  
1998 ◽  
Vol 125 (16) ◽  
pp. 3101-3109 ◽  
Author(s):  
D. Levitan ◽  
I. Greenwald

We have used a LIN-12::GFP fusion protein to examine LIN-12 accumulation during cell fate decisions important for vulval development. During the naturally variable anchor cell (AC)/ventral uterine precursor cell (VU) decision of the somatic gonad, a transcription-based feedback mechanism biases two equivalent cells so that one becomes the AC while the other becomes a VU. LIN-12::GFP accumulation reflects lin-12 transcription: LIN-12::GFP is initially present in both cells, but disappears from the presumptive AC and becomes restricted to the presumptive VU. During vulval precursor cell (VPC) fate determination, six equipotential cells uniformly transcribe lin-12 and have invariant fates that are specified by multiple cell-cell interactions. The pattern of LIN-12::GFP accumulation in VPCs and in the VPC lineages is dynamic and does not always reflect lin-12 transcription. In particular, LIN-12::GFP is expressed initially in all six VPCs, but appears to be reduced specifically in P6.p as a consequence of the activation of the Ras pathway by an EGF-like inductive signal from the AC. We propose that downregulation of LIN-12 stability or translation in response to inductive signalling helps impose a bias on lateral signalling and contributes to the invariant pattern of VPC fates.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 85-95
Author(s):  
Ralf J. Sommer ◽  
Lynn K. Carta ◽  
Paul W. Sternberg

The invariant development of free-living nematodes combined with the extensive knowledge of Caenorhabditis elegans developmental biology provides an experimental system for an analysis of the evolution of developmental mechanisms. We have collected a number of new nematode species from soil samples. Most are easily cultured and their development can be analyzed at the level of individual cells using techniques standard to Caenorhabditis. So far, we have focused on differences in the development of the vulva among species of the families Rhabditidae and Panagrolaimidae. Preceding vulval development, twelve Pn cells migrate into the ventral cord and divide to produce posterior daughters [Pn.p cells] whose fates vary in a position specific manner [from P1.p anterior to P12.p posterior]. In C. elegans hermaphrodites, P(3-8).p are tripotent and form an equivalence group. These cells can express either of two vulval fates (1° or 2°) in response to a signal from the anchor cell of the somatic gonad, or a non-vulval fate (3°), resulting in a 3°-3°-2°-1°-2°-3° pattern of cell fates. Evolutionary differences in vulval development include the number of cells in the vulval equivalence group, the number of 1° cells, the number of progeny generated by each vulval precursor cell, and the position of VPCs before morphogenesis. Examples of three Rhabditidae genera have a posterior vulva in the position of P9-P11 ectoblasts. In Cruznema tripartitum, P(5-7).p form the vulva as in Caenorhabditis, but they migrate posteriorly before dividing. Induction occurs after the gonad grows posteriorly to the position of P(5-7).p cells. In two other species, Mesorhabditis sp. PS 1179 and Teratorhabditis palmarum, we have found changes in induction and competence with respect to their presumably more C. elegans-like ancestor. In Mesorhabditis, P(5-7).p form the vulva after migrating to a posterior position. However, the gonad is not required to specify the pattern of cell fates 3°-2°-1°-2°-3°. Moreover, the Pn.p cells are not equivalent in their potentials to form the vulva. A regulatory constraint in this family thus forces the same set of precursors to generate the vulva, rather than more appropriately positioned Pn.p cells.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 183-197 ◽  
Author(s):  
Marie-Laure Dichtel ◽  
Sophie Louvet-Vallée ◽  
Mark E Viney ◽  
Marie-Anne Félix ◽  
Paul W Sternberg

Abstract Spatial patterning of vulval precursor cell fates is achieved through a different two-stage induction mechanism in the nematode Oscheius/Dolichorhabditis sp. CEW1 compared with Caenorhabditis elegans. We therefore performed a genetic screen for vulva mutants in Oscheius sp. CEW1. Most mutants display phenotypes unknown in C. elegans. Here we present the largest mutant category, which affects division number of the vulva precursors P(4-8).p without changing their fate. Among these mutations, some reduce the number of divisions of P4.p and P8.p specifically. Two mutants omit the second cell cycle of all vulval lineages. A large subset of mutants undergo additional rounds of vulval divisions. We also found precocious and retarded heterochronic mutants. Whereas the C. elegans vulval lineage mutants can be interpreted as overall (homeotic) changes in precursor cell fates with concomitant cell cycle changes, the mutants described in Oscheius sp. CEW1 do not affect overall precursor fate and thereby dissociate the genetic mechanisms controlling vulval cell cycle and fate. Laser ablation experiments in these mutants reveal that the two first vulval divisions in Oscheius sp. CEW1 appear to be redundantly controlled by a gonad-independent mechanism and by a gonadal signal that operates partially independently of vulval fate induction.


Development ◽  
1993 ◽  
Vol 119 (Supplement) ◽  
pp. 9-18 ◽  
Author(s):  
Russell J. Hill ◽  
Paul W. Sternberg

Precursor cells of the vulva of the C. elegans hermaphrodite choose between two vulval cell fates (1° and 2°) and a non-vulval epidermal fate (3°) in response to three intercellular signals. An inductive signal produced by the anchor cell induces the vulval precursors to assume the 1° and 2° vulval fates. This inductive signal is an EGF-like growth factor encoded by the gene lin-3. An inhibitory signal mediated by lin-15, and which may originate from the surrounding epidermis, prevents the vulval precursors from assuming vulval fates in the absence of the inductive signal. A short range lateral signal, which acts through the gene lin-12, regulates the pattern of 1° and 2° fates assumed by the induced vulval precursors. The combined action of the three signals precisely directs the six vulval precursors to adopt a 3° 3° 2° 1° 2 ° 3° pattern of fates. The amount of inductive signal produced by the anchor cell appears to determine the number or vulval precursors that assume vulval fates. The three induced vulval precursors most proximal to the anchor cell are proposed to adopt the 2° 1° 2° pattern of fates in response to a gradient of the inductive signal and also in response to lateral signalling that inhibits adjacent vulval precursor cells from both assuming the 1° fate.


Development ◽  
1997 ◽  
Vol 124 (21) ◽  
pp. 4193-4200 ◽  
Author(s):  
C. Wittmann ◽  
O. Bossinger ◽  
B. Goldstein ◽  
M. Fleischmann ◽  
R. Kohler ◽  
...  

Clusters of homeobox-containing HOM-C/hox genes determine the morphology of animal body plans and body parts and are thought to mediate positional information. Here, we describe the onset of embryonic expression of ceh-13, the Caenorhabditis elegans orthologue of the Drosophila labial gene, which is the earliest gene of the C. elegans Hox gene cluster to be activated in C. elegans development. At the beginning of gastrulation, ceh-13 is asymmetrically expressed in posterior daughters of anteroposterior divisions, first in the posterior daughter of the intestinal precursor cell E and then in all posterior daughters of the AB descendants ABxxx. In this paper, we present evidence that supports position-independent activation of ceh-13 during early C. elegans embryogenesis, which integrates cell fate determinants and cell polarity cues. Our findings imply that mechanisms other than cell-extrinsic anteroposterior positional signals play an important role in the activation and regulation of the C. elegans Hox gene ceh-13.


2018 ◽  
Author(s):  
Amhed M. Vargas-Velazquez ◽  
Fabrice Besnard ◽  
Marie-Anne Félix

AbstractGenetic screens in the nematode Caenorhabditis elegans identified the EGF/Ras and Notch pathways as central for vulval precursor cell fate patterning. Schematically, the anchor cell secretes EGF, inducing the P6.p cell to a 1° vulval fate; P6.p in turn induces its neighbors to a 2° fate through Delta-Notch signaling and represses Ras signaling. In the nematode Oscheius tipulae, the anchor cell successively induces 2° then 1° vulval fates. Here we report on the molecular identification of mutations affecting vulval induction in O. tipulae. A single Induction Vulvaless mutation was found, which we identify as a cis-regulatory deletion in a tissue-specific enhancer of the O. tipulae lin-3 homolog, confirmed by CRISPR/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° fates unexpectedly correspond to the plexin/semaphorin pathway, which was not implicated in vulval fate induction in C. elegans. Hyperinduction of P4.p and P8.p in these mutants likely results from mispositioning of these cells due to a lack of contact inhibition. The third signaling pathway found by forward genetics in O. tipulae is the Wnt pathway: decrease in Wnt pathway activity results in loss of vulval precursor competence and induction, and 1° fate miscentering on P5.p. Our results suggest that the EGF and Wnt pathways have qualitatively similar activities in vulval induction in C. elegans and O. tipulae, albeit with quantitative differences in the effects of mutation. This study highlights both necessity and contingency in forward genetic screens.100-word summaryGenetic screens in the nematode Caenorhabditis elegans identified EGF and Notch pathways as key for vulval precursor cell fate patterning. Here we report on the molecular identification of mutations affecting vulval induction in another nematode, Oscheius tipulae. The single mutation with reduced induction is identified as a cis-regulatory deletion in the O. tipulae lin-3 homolog, confirmed by CRISPR/Cas9 mutation. In contrast to this predictable Vulvaless mutation, mutations resulting in an excess of 2° vulval fates unexpectedly correspond to the plexin/semaphorin pathway, not implicated in vulval induction in C. elegans. This study highlights both necessity and contingency in forward genetic screens.


Sign in / Sign up

Export Citation Format

Share Document