Distinct signaling molecules control Hoxa-11 and Hoxa-13 expression in the muscle precursor and mesenchyme of the chick limb bud

Development ◽  
1999 ◽  
Vol 126 (12) ◽  
pp. 2771-2783 ◽  
Author(s):  
K. Hashimoto ◽  
Y. Yokouchi ◽  
M. Yamamoto ◽  
A. Kuroiwa

The limb muscles, originating from the ventrolateral portion of the somites, exhibit position-specific morphological development through successive splitting and growth/differentiation of the muscle masses in a region-specific manner by interacting with the limb mesenchyme and the cartilage elements. The molecular mechanisms that provide positional cues to the muscle precursors are still unknown. We have shown that the expression patterns of Hoxa-11 and Hoxa-13 are correlated with muscle patterning of the limb bud (Yamamoto et al., 1998) and demonstrated that muscular Hox genes are activated by signals from the limb mesenchyme. We dissected the regulatory mechanisms directing the unique expression patterns of Hoxa-11 and Hoxa-13 during limb muscle development. HOXA-11 protein was detected in both the myogenic cells and the zeugopodal mesenchymal cells of the limb bud. The earlier expression of HOXA-11 in both the myogenic precursor cells and the mesenchyme was dependent on the apical ectodermal ridge (AER), but later expression was independent of the AER. HOXA-11 expression in both myogenic precursor cells and mesenchyme was induced by fibroblast growth factor (FGF) signal, whereas hepatocyte growth factor/scatter factor (HGF/SF) maintained HOXA-11 expression in the myogenic precursor cells, but not in the mesenchyme. The distribution of HOXA-13 protein expression in the muscle masses was restricted to the posterior region. We found that HOXA-13 expression in the autopodal mesenchyme was dependent on the AER but not on the polarizing region, whereas expression of HOXA-13 in the posterior muscle masses was dependent on the polarizing region but not on the AER. Administration of BMP-2 at the anterior margin of the limb bud induced ectopic HOXA-13 expression in the anterior region of the muscle masses followed by ectopic muscle formation close to the source of exogenous BMP-2. In addition, NOGGIN/CHORDIN, antagonists of BMP-2 and BMP-4, downregulated the expression of HOXA-13 in the posterior region of the muscle masses and inhibited posterior muscle development. These results suggested that HOXA-13 expression in the posterior muscle masses is activated by the posteriorizing signal from the posterior mesenchyme via BMP-2. On the contrary, the expression of HOXA-13 in the autopodal mesenchyme was affected by neither BMP-2 nor NOGGIN/CHORDIN. Thus, mesenchymal HOXA-13 expression was independent of BMP-2 from polarizing region, but was under the control of as yet unidentified signals from the AER. These results showed that expression of Hox genes is regulated differently in the limb muscle precursor and mesenchymal cells.

Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1325-1335 ◽  
Author(s):  
M. Yamamoto ◽  
Y. Gotoh ◽  
K. Tamura ◽  
M. Tanaka ◽  
A. Kawakami ◽  
...  

The limb muscle precursor cells migrate from the somites and congregate into the dorsal and ventral muscle masses in the limb bud. Complex muscle patterns are formed by successive splitting of the muscle masses and subsequent growth and differentiation in a region-specific manner. Hox genes, known as key regulator genes of cartilage pattern formation in the limb bud, were found to be expressed in the limb muscle precursor cells. We found that HOXA-11 protein was expressed in the premyoblasts in the limb bud, but not in the somitic cells or migrating premyogenic cells in the trunk at stage 18. By stage 24, HOXA-11 expression began to decrease from the posterior halves of the muscle masses. HOXA-13 was expressed strongly in the myoblasts of the posterior part in the dorsal/ventral muscle masses and weakly in a few myoblasts of the anterior part of the dorsal muscle mass. Transplantation of the lateral plate of the presumptive wing bud to the flank induced migration of premyoblasts from somites to the graft. Under these conditions, HOXA-11 expression was induced in the migrating premyoblasts in the ectopic limb buds. Application of retinoic acid at the anterior margin of the limb bud causes duplication of the autopodal cartilage and transformation of the radius to the ulna, and at the same time induces duplication of the muscle pattern along the anteroposterior axis. Under these conditions, HOXA-13 was also induced in the anterior region of the ventral muscles in the zeugopod. These results suggest that Hoxa-11 and Hoxa-13 expression in the migrating premyoblasts is under the control of the limb mesenchyme and the polarizing signal(s). In addition, these results indicate that these Hox genes are involved in muscle patterning in the limb buds.


Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4885-4893 ◽  
Author(s):  
M. Scaal ◽  
A. Bonafede ◽  
V. Dathe ◽  
M. Sachs ◽  
G. Cann ◽  
...  

Scatter factor/hepatocyte growth factor (SF/HGF) is known to be involved in the detachment of myogenic precursor cells from the lateral dermomyotomes and their subsequent migration into the newly formed limb buds. As yet, however, nothing has been known about the role of the persistent expression of SF/HGF in the limb bud mesenchyme during later stages of limb bud development. To test for a potential role of SF/HGF in early limb muscle patterning, we examined the regulation of SF/HGF expression in the limb bud as well as the influence of SF/HGF on direction control of myogenic precursor cells in limb bud mesenchyme. We demonstrate that SF/HGF expression is controlled by signals involved in limb bud patterning. In the absence of an apical ectodermal ridge (AER), no expression of SF/HGF in the limb bud is observed. However, FGF-2 application can rescue SF/HGF expression. Excision of the zone of polarizing activity (ZPA) results in ectopic and enhanced SF/HGF expression in the posterior limb bud mesenchyme. We could identify BMP-2 as a potential inhibitor of SF/HGF expression in the posterior limb bud mesenchyme. We further demonstrate that ZPA excision results in a shift of Pax-3-positive cells towards the posterior limb bud mesenchyme, indicating a role of the ZPA in positioning of the premuscle masses. Moreover, we present evidence that, in the limb bud mesenchyme, SF/HGF increases the motility of myogenic precursor cells and has a role in maintaining their undifferentiated state during migration. We present a model for a crucial role of SF/HGF during migration and early patterning of muscle precursor cells in the vertebrate limb.


1995 ◽  
Vol 147 (2) ◽  
pp. R5-R8 ◽  
Author(s):  
Randal D. Streck ◽  
Veeraramani S. Rajaratnam ◽  
Renata B. Fishman ◽  
Peggy J. Webb

ABSTRACT Matemal diabetes is associated in humans and rats with an increased risk for fetal growth abnormalities and malformations. Therefore, the effect of maternal diabetes on expression of genes that regulate fetal growth and differentiation is of considerable interest. Developmental growth is regulated in part by the expression and availability of insulin-like growth factors (IGFs). Postnatal expression of a subset of the IGFs and IGF binding proteins (IGFBPs) has been demonstrated to be regulated in response to diabetes and other metabolic conditions. We used in situ hybridization to analyze the effect of maternal diabetes, induced by streptozotocin (STZ) prior to mating, upon prenatal rat IGF and IGFBP mRNA expression. At gestational day (GD) 14, the most striking effect of maternal diabetes on fetal IGF/IGFBP gene expression was a marked increase in the abundance of IGFBP-1 mRNA within the liver primordia of fetuses isolated from diabetic dams compared to age-matched controls. This upregulation cannot be entirely due to the approximately one-half-day delay in fetal development (based on limb bud staging) associated with maternal diabetes, as there was no gross difference in the level of IGFBP-1 mRNA between GD13 and GD14 control fetal livers. In contrast, the fetal mRNA expression patterns of IGF-I, IGF-II and IGFBP-2, -3, -4, -5 and -6 were not grossly altered by maternal diabetes. These data are consistent with the hypothesis that IGFBP-1 produced within the fetal liver and secreted into fetal circulation may play a role in regulating rat fetal growth.


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1449-1466 ◽  
Author(s):  
C.E. Nelson ◽  
B.A. Morgan ◽  
A.C. Burke ◽  
E. Laufer ◽  
E. DiMambro ◽  
...  

The vertebrate Hox genes have been shown to be important for patterning the primary and secondary axes of the developing vertebrate embryo. The function of these genes along the primary axis of the embryo has been generally interpreted in the context of positional specification and homeotic transformation of axial structures. The way in which these genes are expressed and function during the development of the secondary axes, particularly the limb, is less clear. In order to provide a reference for understanding the role of the Hox genes in limb patterning, we isolated clones of 23 Hox genes expressed during limb development, characterized their expression patterns and analyzed their regulation by the signalling centers which pattern the limb. The expression patterns of the Abd-B-related Hoxa and Hoxd genes have previously been partially characterized; however, our study reveals that these genes are expressed in patterns more dynamic and complex than generally appreciated, only transiently approximating simple, concentric, nested domains. Detailed analysis of these patterns suggests that the expression of each of the Hoxa and Hoxd genes is regulated in up to three independent phases. Each of these phases appears to be associated with the specification and patterning of one of the proximodistal segments of the limb (upper arm, lower arm and hand). Interestingly, in the last of these phases, the expression of the Hoxd genes violates the general rule of spatial and temporal colinearity of Hox gene expression with gene order along the chromosome. In contrast to the Abd-B-related Hoxa and Hoxd genes, which are expressed in both the fore and hind limbs, different sets of Hoxc genes are expressed in the two limbs. There is a correlation between the relative position of these genes along the chromosome and the axial level of the limb bud in which they are expressed. The more 3′ genes are expressed in the fore limb bud while the 5′ genes are expressed in the hind limb bud; intermediate genes are transcribed in both limbs. However, there is no clear correlation between the relative position of the genes along the chromosome and their expression domains within the limb. With the exception of Hoxc-11, which is transcribed in a posterior portion of the hind limb, Hoxc gene expression is restricted to the anterior/proximal portion of the limb bud. Importantly, comparison of the distributions of Hoxc-6 RNA and protein products reveals posttranscriptional regulation of this gene, suggesting that caution must be exercised in interpreting the functional significance of the RNA distribution of any of the vertebrate Hox genes. To understand the genesis of the complex patterns of Hox gene expression in the limb bud, we examined the propagation of Hox gene expression relative to cell proliferation. We find that shifts in Hox gene expression cannot be attributed to passive expansion due to cell proliferation. Rather, phase-specific Hox gene expression patterns appear to result from a context-dependent response of the limb mesoderm to Sonic hedgehog. Sonic hedgehog (the patterning signal from the Zone of Polarizing Activity) is known to be able to activate Hoxd gene expression in the limb. Although we find that Sonic hedgehog is capable of initiating and polarizing Hoxd gene expression during both of the latter two phases of Hox gene expression, the specific patterns induced are not determined by the signal, but depend upon the temporal context of the mesoderm receiving the signal. Misexpression of Sonic hedgehog also reveals that Hoxb-9, which is normally excluded from the posterior mesenchyme of the leg, is negatively regulated by Sonic hedgehog and that Hoxc-11, which is expressed in the posterior portion of the leg, is not affected by Sonic hedgehog and hence is not required to pattern the skeletal elements of the lower leg.


Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 743-752 ◽  
Author(s):  
M. Kruger ◽  
D. Mennerich ◽  
S. Fees ◽  
R. Schafer ◽  
S. Mundlos ◽  
...  

Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.


Development ◽  
1998 ◽  
Vol 125 (1) ◽  
pp. 51-60 ◽  
Author(s):  
H. Ohuchi ◽  
J. Takeuchi ◽  
H. Yoshioka ◽  
Y. Ishimaru ◽  
K. Ogura ◽  
...  

It has been reported that members of the fibroblast growth factor (FGF) family can induce additional limb formation in the flank of chick embryos. The phenotype of the ectopic limb depends on the somite level at which it forms: limbs in the anterior flank resemble wings, whereas those in the posterior flank resemble legs. Ectopic limbs located in the mid-flank appear chimeric, possessing characteristics of both wings and legs; feather buds are present in the anterior halves with scales and claws in the posterior halves. To study the mechanisms underlying the chimerism of these additional limbs, we cloned chick Tbx5 and Tbx4 to use as forelimb and hindlimb markers and examined their expression patterns in FGF-induced limb buds. We found that Tbx5 and Tbx4 were differentially expressed in the anterior and posterior halves of additional limb buds in the mid-flank, respectively, consistent with the chimeric patterns of the integument. A boundary of Tbx5/Tbx4 exists in all ectopic limbs, indicating that the additional limbs are essentially chimeric, although the degree of chimerism is dependent on the position. The boundary of Tbx5/Tbx4 expression is not fixed at a specific position within the interlimb region, but dependent upon where FGF was applied. Since the ectopic expression patterns of Tbx5/Tbx4 in the additional limbs are closely correlated with the patterns of their chimeric phenotypes, it is likely that Tbx5 and Tbx4 expression in the limb bud is involved in determination of the forelimb and hindlimb identities, respectively, in vertebrates.


2020 ◽  
Vol 8 (4) ◽  
pp. 31
Author(s):  
Ines Desanlis ◽  
Rachel Paul ◽  
Marie Kmita

Limb patterning relies in large part on the function of the Hox family of developmental genes. While the differential expression of Hox genes shifts from the anterior–posterior (A–P) to the proximal–distal (P–D) axis around embryonic day 11 (E11), whether this shift coincides with a more global change of A–P to P–D patterning program remains unclear. By performing and analyzing the transcriptome of the developing limb bud from E10.5 to E12.5, at single-cell resolution, we have uncovered transcriptional trajectories that revealed a general switch from A–P to P–D genetic program between E10.5 and E11.5. Interestingly, all the transcriptional trajectories at E10.5 end with cells expressing either proximal or distal markers suggesting a progressive acquisition of P–D identity. Moreover, we identified three categories of genes expressed in the distal limb mesenchyme characterized by distinct temporal expression dynamics. Among these are Hoxa13 and Hoxd13 (Hox13 hereafter), which start to be expressed around E10.5, and importantly the binding of the HOX13 factors was observed within or in the neighborhood of several of the distal limb genes. Our data are consistent with previous evidence suggesting that the transition from the early/proximal to the late/distal transcriptome of the limb mesenchyme largely relies on HOX13 function. Based on these results and the evidence that HOX13 factors restrict Hoxa11 expression to the proximal limb, in progenitor cells of the zeugopod, we propose that HOX13 act as a key determinant of P–D patterning.


1989 ◽  
Vol 108 (6) ◽  
pp. 2459-2466 ◽  
Author(s):  
J Joseph-Silverstein ◽  
S A Consigli ◽  
K M Lyser ◽  
C Ver Pault

The identification of acidic and basic fibroblast growth factors (FGFs) in a number of embryonic tissue extracts has implicated these growth factors in the regulation of a variety of embryonic events including angiogenesis, eye development, and muscle differentiation. Lack of information concerning the cellular distribution of the growth factor within these tissues has made it extremely difficult to assign developmental roles to FGF. We have localized bFGF in the developing chick embryo using immunohistochemical techniques and our monospecific polyclonal rabbit anti-human bFGF IgG. The spatial pattern for bFGF localization was highly specific. The anti-human bFGF antibodies recognized striated muscle cells and their precursors in 2-6-d chick embryos. Myocardium, somite myotome, and limb bud muscle all stain positively for bFGF. In addition, the anti-human bFGF antibodies localized specifically to the cell, rather than to the extracellular matrix or nucleus of myotubes. The localization of bFGF demonstrated here provides further support for the hypothesis (Clegg et al., 1987; Seed et al., 1988) that this growth factor is involved in muscle development.


Sign in / Sign up

Export Citation Format

Share Document