The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo

Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4691-4701 ◽  
Author(s):  
S.J. Kinder ◽  
T.E. Tsang ◽  
G.A. Quinlan ◽  
A.K. Hadjantonakis ◽  
A. Nagy ◽  
...  

The prospective fate of cells in the primitive streak was examined at early, mid and late stages of mouse gastrula development to determine the order of allocation of primitive streak cells to the mesoderm of the extraembryonic membranes and to the fetal tissues. At the early-streak stage, primitive streak cells contribute predominantly to tissues of the extraembryonic mesoderm as previously found. However, a surprising observation is that the erythropoietic precursors of the yolk sac emerge earlier than the bulk of the vitelline endothelium, which is formed continuously throughout gastrula development. This may suggest that the erythropoietic and the endothelial cell lineages may arise independently of one another. Furthermore, the extraembryonic mesoderm that is localized to the anterior and chorionic side of the yolk sac is recruited ahead of that destined for the posterior and amnionic side. For the mesodermal derivatives in the embryo, those destined for the rostral structures such as heart and forebrain mesoderm ingress through the primitive streak early during a narrow window of development. They are then followed by those for the rest of the cranial mesoderm and lastly the paraxial and lateral mesoderm of the trunk. Results of this study, which represent snapshots of the types of precursor cells in the primitive streak, have provided a better delineation of the timing of allocation of the various mesodermal lineages to specific compartments in the extraembryonic membranes and different locations in the embryonic anteroposterior axis.

Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 151-159 ◽  
Author(s):  
J.E. Lee ◽  
J. Pintar ◽  
A. Efstratiadis

The mouse insulin-like growth factor II (IGF-II) gene encodes a polypeptide that plays a role in embryonic growth. We have examined the temporal and spatial pattern of expression of this gene in sections of the mouse conceptus between embryonic days 4.0 and 8.5 by in situ hybridization. Abundant IGF-II transcripts were detected in all the trophectodermal derivatives, after implantation. Labeling was then observed in primitive endoderm, but was transient and disappeared after formation of the yolk sac. Expression was next detected in extraembryonic mesoderm at the early primitive streak stage. Labeling in the embryo proper appeared first at the late primitive streak/neural plate stage in lateral mesoderm and in anterior-proximal cells located between the visceral endoderm and the most cranial region of the embryonic ectoderm. The position of the latter cells suggests that their descendants are likely to participate in the formation of the heart and the epithelium of the ventral and lateral walls of the foregut, where intense labeling was observed at the neural fold stage. Hybridization was also detected in cranial mesenchyme, including neural crest cells. The intensity of hybridization signal increased progressively in paraxial (presomitic and somitic) mesoderm, while declining in the ectoplacental cone. The neuroectoderm and surface ectoderm did not exhibit hybridization at any stage. Immunohistochemical analysis indicated co-localization of IGF-II transcripts, translated pre-pro-IGF-II, and the cognate IGF-II/mannose-6-phosphate receptor. These correlations are consistent with the hypothesis that IGF-II has an autocrine function.


2020 ◽  
Author(s):  
Simone Probst ◽  
Sagar ◽  
Jelena Tosic ◽  
Carsten Schwan ◽  
Dominic Grün ◽  
...  

AbstractAnterior mesoderm (AM) and definitive endoderm (DE) progenitors represent the earliest embryonic cell types that are specified during germ layer formation at the primitive streak (PS) of the mouse embryo. Genetic experiments indicate that both lineages segregate from Eomes expressing progenitors in response to different NODAL signaling levels. However, the precise spatiotemporal pattern of the emergence of these cell types and molecular details of lineage segregation remain unexplored. We combined genetic fate labeling and imaging approaches with scRNA-seq to follow the transcriptional identities and define lineage trajectories of Eomes dependent cell types. All cells moving through the PS during the first day of gastrulation express Eomes. AM and DE specification occurs before cells leave the PS from discrete progenitor populations that are generated in distinct spatiotemporal patterns. Importantly, we don’t find evidence for the existence of progenitors that co-express markers of both cell lineages suggesting an immediate and complete separation of AM and DE lineages.Summary statementCells lineages are specified in the mouse embryo already within the primitive streak where Mesp1+ mesoderm and Foxa2+ endoderm are generated in a spatial and temporal sequence from unbiased progenitors.


Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 156-163 ◽  
Author(s):  
J Palis ◽  
KE McGrath ◽  
PD Kingsley

The blood islands of the visceral yolk sac (VYS) are the initial sites of hematopoiesis in mammals. We have developed a yolk sac explant culture system to study the process of blood cell and endothelial cell development from extraembryonic mesoderm cells. No benzidine-positive cells or beta H1-globin mRNA expression was detected at the primitive streak or neural plate stage of development (E7.5). However, when isolated E7.5 dissected tissues were cultured for 36 to 72 hours in serum-free medium, hundreds of hemoglobin-producing cells and embryonic globin gene expression were identified in both intact yolk sac and VYS mesoderm explants. Explanted E7.5 extraembryonic mesoderm tissues thus recapitulate in vivo primitive erythropoiesis and do not require the presence of a vascular network or the VYS endoderm. Yolk sac blood islands also contain endothelial cells that arise by vasculogenesis and express flk-1. We detected flk-1 mRNA as early as the primitive streak stage of mouse embryogenesis. Culture of embryo proper and intact VYS explants, which contain both mesoderm and endoderm cells, produced capillary networks and expressed flk-1. In contrast, vascular networks were not seen when VYS mesoderm was cultured alone, although flk-1 expression was similar to that of intact VYS explants. The addition of vascular endothelial growth factor to VYS mesoderm explants did not induce vascular network formation. These results suggest that the VYS endoderm or its extracellular matrix is necessary for the coalescence of developing endothelial cells into capillary networks.


Development ◽  
1987 ◽  
Vol 99 (1) ◽  
pp. 109-126 ◽  
Author(s):  
P.P. Tam ◽  
R.S. Beddington

Orthotopic grafts of [3H]thymidine-labelled cells have been used to demonstrate differences in the normal fate of tissue located adjacent to and in different regions of the primitive streak of 8th day mouse embryos developing in vitro. The posterior streak produces predominantly extraembryonic mesoderm, while the middle portion gives rise to lateral mesoderm and the anterior region generates mostly paraxial mesoderm, gut and notochord. Embryonic ectoderm adjacent to the anterior part of the streak contributes mainly to paraxial mesoderm and neurectoderm. This pattern of colonization is similar to the fate map constructed in primitive-streak-stage chick embryos. Similar grafts between early-somite-stage (9th day) embryos have established that the older primitive streak continues to generate embryonic mesoderm and endoderm, but ceases to make a substantial contribution to extraembryonic mesoderm. Orthotopic grafts and specific labelling of ectodermal cells with wheat germ agglutinin conjugated to colloidal gold (WGA-Au) have been used to analyse the recruitment of cells into the paraxial mesoderm of 8th and 9th day embryos. The continuous addition of primitive-streak-derived cells to the paraxial mesoderm is confirmed and the distribution of labelled cells along the craniocaudal sequence of somites is consistent with some cell mixing occurring within the presomitic mesoderm.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 566-566
Author(s):  
James Palis ◽  
Joanna Tober ◽  
Radhika Vemishetti ◽  
Anne Koniski ◽  
Richard Waugh

Abstract Two distinct waves of hematopoietic progenitors originate in the yolk sac of the mammalian embryo. The first “primitive” wave contains primitive erythroid and macrophage progenitors that generate the embryo’s first red cells (Palis, et al. Development126:5073, 1999). The second “definitive” wave consists of definitive erythroid (BFU-E) and multiple myeloid progenitors that arise later in the yolk sac and are subsequently found in the fetal liver and postnatal marrow. While megakaryocyte progenitors have been detected in the yolk sac, the ontogeny of the megakaryocyte lineage is poorly understood. Furthermore, it is not been determined when platelets first enter the bloodstream of the mouse embryo. The presence and size of platelets in the embryonic bloodstream were examined by microscopy after staining with anti-GPV antibodies. Rare platelets were identified in 2 of 4 litters of mice at E10.5. These platelets were very large with a diameter of 4.2 ± 0.4 (mean ± SEM) microns. Platelet size remained large (4.0-3.8 microns) at E11.5–E12.5, but decreased to 3.3-3.2 microns in diameter between E13.5 and E15.5 of gestation. At birth, the mean platelet diameter (2.8 ± 0.04 microns) was similar to that of adult mice (2.7 microns). These results indicate that large, embryonic platelets begin to circulate in the mouse embryo beginning at E10.5 and raise the possibility that embryonic, fetal, and adult waves of platelets are produced during mammalian embryogenesis. Using a collagen-based culture system, megakaryocyte progenitors (Meg-CFC) were first identified in late primitive streak embryos (E7.25), concomitant with primitive erythroid progenitors. Meg-CFC numbers subsequently expand in the yolk sac along with BFU-E before the development of the fetal liver. To examine the relationship of the megakaryocyte and primitive erythroid lineages in the yolk sac, we stained hematopoietic colonies grown in collagen for 5–10 days with anti-GP1bβ (megakaryocyte) and anti-βH1-globin (primitive erythroid) antibodies. As expected, the majority of the stained colonies were primitive erythroid (containing only βH1-globin-positive cells) and approximately 15% of the colonies were megakaryocyte (containing only GP1bβ-positive cells). However, 15% of the colonies contained both GP1bβ- and βH1-globin-positive cells consistent with an origin from bipotential primitive erythroid/megakaryocyte progenitors. Furthermore, proplatelet formation was evident in both unipotential and bipotential megakaryocyte colonies cultured for 10 days. Our studies support the concept that the megakaryocyte and primitive erythroid lineages originate in the yolk sac from a bipotential precursor. This parallels lineage relationships in the bone marrow which contains bipotential definitive erythroid/megakaryocyte progenitors. Finally, we hypothesize that yolk sac-derived “primitive” Meg-CFC give rise to the first embryonic platelets that enter the bloodstream soon after the onset of circulation as the fetal liver becomes a hematopoietic organ.


Development ◽  
1998 ◽  
Vol 125 (22) ◽  
pp. 4495-4506 ◽  
Author(s):  
C. Faust ◽  
K.A. Lawson ◽  
N.J. Schork ◽  
B. Thiel ◽  
T. Magnuson

We have characterized an induced mutation, called embryonic ectoderm development or eed, that disrupts A-P patterning of the mouse embryo during gastrulation. Positional cloning of this gene revealed it to be the highly conserved homologue of the Drosophila gene extra sex combs, which is required for maintenance of long-term transcriptional repression of homeotic gene expression. Mouse embryos homozygous for loss-of-function alleles of eed initiate gastrulation but display abnormal mesoderm production. Very little embryonic mesoderm is produced; in contrast, extraembryonic mesoderm is relatively abundant. These observations, along with mRNA in situ hybridization analyses, suggested a defect in the anterior primitive streak, from which much of the embryonic mesoderm of the wild-type embryo is derived. To analyse this defect, we initiated clonal analysis of the pre-streak epiblast in eed mutant embryos, using the lineage tracer horseradish peroxidase (HRP). The results of these studies indicate that epiblast cells ingress through the anterior streak, but the newly formed mesoderm does not migrate anteriorly and is mislocalized to the extraembryonic compartment. Abnormal localization of mesoderm to the extraembryonic region did not appear to be due to a restriction and alteration of distal epiblast cell fate, since the majority of clones produced from regions fated to ingress through the anterior streak were mixed, displaying descendants in both embryonic and extraembryonic derivatives. eed mutant embryos also fail to display proper epiblast expansion, particularly with respect to the A-P axis. Based on patterns of clonal spread and calculated clone doubling times for the epiblast, this does not appear to be due to decreased epiblast growth. Rather, epiblast, which is normally fated to make a substantial contribution to the axial midline, appears to make mesoderm preferentially. The data are discussed in terms of global morphogenetic movements in the mouse gastrula and a disruption of signalling activity in the anterior primitive streak.


1995 ◽  
Vol 146 (3) ◽  
pp. 527-534 ◽  
Author(s):  
K H Liu ◽  
J C Huang ◽  
J D Godkin

Abstract Caprine chorion, allantois and amnion from days 23, 28, 35, 39 and 45, and yolk sac from day 23 of pregnancy were isolated by dissection and cultured for 24 h in modified minimum essential medium in the presence of [35S] methionine. De novo-synthesized proteins released into the culture medium were analyzed by two-dimensional PAGE and fluorography. Patterns of protein production by these isolated extraembryonic membranes remained relatively unchanged from days 23 to 45 of pregnancy. Electrophoretic profiles of proteins synthesized by allantois and amnion were identical but distinct from that produced by chorion. Yolk sac was the major source of serum-like proteins. An acidic (pI 5·3–6·3) 22 kDa protein, which consisted of four isoelectric variants, was produced by all extraembryonic membranes and demonstrated to immunoreact with antiserum produced against bovine placental retinol-binding protein (RBP). Limited N-terminal sequence analysis of one major isoform indicated that the protein had complete homology with bovine RBP over the first 15 amino acids. Immunoreactive RBP was localized in epithelial cells lining the chorion, allantois and amnion. In this study, we have characterized and compared protein production by isolated extraembryonic membranes through days 23 to 45 of pregnancy and identified the 22 kDa protein as caprine RBP of placental origin. Journal of Endocrinology (1995) 146, 527–534


Sign in / Sign up

Export Citation Format

Share Document