Compensatory defects associated with mutations in Hoxa1 restore normal palatogenesis to Hoxa2 mutants

Development ◽  
1999 ◽  
Vol 126 (22) ◽  
pp. 5011-5026 ◽  
Author(s):  
J.R. Barrow ◽  
M.R. Capecchi

The rhombencephalic neural crest play several roles in craniofacial development. They give rise to the cranial sensory ganglia and much of the craniofacial skeleton, and are vital for patterning of the craniofacial muscles. The loss of Hoxa1 or Hoxa2 function affects the development of multiple neural crest-derived structures. To understand how these two genes function together in craniofacial development, an allele was generated that disrupts both of these linked genes. Some of the craniofacial defects observed in the double mutants were additive combinations of those that exist in each of the single mutants, indicating that each gene functions independently in the formation of these structures. Other defects were found only in the double mutants demonstrating overlapping or synergistic functions. We also uncovered multiple defects in the attachments and trajectories of the extrinsic tongue and hyoid muscles in Hoxa2 mutants. Interestingly, the abnormal trajectory of two of these muscles, the styloglossus and the stylohyoideus, blocked the attachment of the hyoglossus to the greater horn of the hyoid, which in turn correlated exactly with the presence of cleft palate in Hoxa2 mutants. We suggest that the hyoglossus, whose function is to depress the lateral edges of the tongue, when unable to make its proper attachment to the greater horn of the hyoid, forces the tongue to adopt an abnormal posture which blocks closure of the palatal shelves. Unexpectedly, in Hoxa1/Hoxa2 double mutants, the penetrance of cleft palate is dramatically reduced. We show that two compensatory defects, associated with the loss of Hoxa1 function, restore normal attachment of the hyoglossus to the greater horn thereby allowing the palatal shelves to lift and fuse above the flattened tongue.

Science ◽  
2021 ◽  
Vol 371 (6529) ◽  
pp. eabb4776 ◽  
Author(s):  
Antoine Zalc ◽  
Rahul Sinha ◽  
Gunsagar S. Gulati ◽  
Daniel J. Wesche ◽  
Patrycja Daszczuk ◽  
...  

During development, cells progress from a pluripotent state to a more restricted fate within a particular germ layer. However, cranial neural crest cells (CNCCs), a transient cell population that generates most of the craniofacial skeleton, have much broader differentiation potential than their ectodermal lineage of origin. Here, we identify a neuroepithelial precursor population characterized by expression of canonical pluripotency transcription factors that gives rise to CNCCs and is essential for craniofacial development. Pluripotency factor Oct4 is transiently reactivated in CNCCs and is required for the subsequent formation of ectomesenchyme. Furthermore, open chromatin landscapes of Oct4+ CNCC precursors resemble those of epiblast stem cells, with additional features suggestive of priming for mesenchymal programs. We propose that CNCCs expand their developmental potential through a transient reacquisition of molecular signatures of pluripotency.


2020 ◽  
Author(s):  
Martha L. Echevarría-Andino ◽  
Benjamin L. Allen

AbstractThe Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors– GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes, characterized by the failure to divide and form the telencephalon and midfacial structures. In contrast, we find that Boc deletion results in facial widening consistent with increased HH pathway activity. Additionally, the deletion of Boc in a Gas1 null background partially rescues the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc. Mechanistically, BOC selectively restricts neural crest-derived mesenchymal proliferation. Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.Summary statementHere we identify dual, tissue-specific roles for the Hedgehog co-receptor BOC in both the promotion and antagonism of Hedgehog signaling during craniofacial development.


2019 ◽  
Author(s):  
Lomeli Shull ◽  
Rwik Sen ◽  
Johannes Menzel ◽  
Kristin Bruk Artinger

The formation of the craniofacial skeleton is a highly dynamic process that requires proper orchestration of various cellular processes in cranial neural crest cell (cNCC) development, including cell migration, proliferation, differentiation, polarity and cell death. Alterations that occur during cNCC development result in congenital birth defects and craniofacial abnormalities such as cleft lip with or without cleft palate. While the gene regulatory networks facilitating neural crest development have been extensively studied, the epigenetic mechanisms by which these pathways are activated or repressed in a temporal and spatially regulated manner remain largely unknown. Chromatin modifers can precisely modify gene expression through a variety of mechanisms including histone modifications such as methylation. Here, we investigated the role of two members of the PRDM (Positive regulatory domain) histone methyltransferase family, Prdm3 and Prdm16 in craniofacial development using genetic models in zebrafish and mice. Loss of prdm3 or prdm16 in zebrafish causes craniofacial defects including hypoplasia of the craniofacial cartilage elements, undefined posterior ceratobranchials, and decreased mineralization of the parasphenoid. In mice, while conditional loss of Prdm3 in the early embryo proper causes mid-gestation lethality, loss of Prdm16 caused craniofacial defects including anterior mandibular hypoplasia, clefting in the secondary palate and severe middle ear defects. In zebrafish, prdm3 and prdm16 compensate for each other as well as a third Prdm family member, prdm1a. Combinatorial loss of prdm1a, prdm3, and prdm16 alleles results in severe hypoplasia of the anterior cartilage elements, abnormal formation of the jaw joint, complete loss of the posterior ceratobranchials, and clefting of the ethmoid plate. We further determined that loss of prdm3 and prdm16 reduces methylation of histone 3 lysine 9 (repression) and histone 3 lysine 4 (activation) in zebrafish. In mice, loss of Prdm16 significantly decreased histone 3 lysine 9 methylation in the palatal shelves but surprisingly did not change histone 3 lysine 4 methylation. Taken together, Prdm3 and Prdm16 play an important role in craniofacial development by maintaining temporal and spatial regulation of gene regulatory networks necessary for proper cNCC development and these functions are both conserved and divergent across vertebrates.


2019 ◽  
Vol 10 ◽  
Author(s):  
Alexandra Mills ◽  
Elizabeth Bearce ◽  
Rachael Cella ◽  
Seung Woo Kim ◽  
Megan Selig ◽  
...  

BioFactors ◽  
2004 ◽  
Vol 21 (1-4) ◽  
pp. 15-18 ◽  
Author(s):  
Ichiro Matsumoto ◽  
Shugo Nakamura ◽  
Yasufumi Emori ◽  
Soichi Arai ◽  
Keiko Abe

2011 ◽  
Vol 357 (1) ◽  
pp. 269-281 ◽  
Author(s):  
Christopher W. Johnson ◽  
Laura Hernandez-Lagunas ◽  
Weiguo Feng ◽  
Vida Senkus Melvin ◽  
Trevor Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document