Drosophila wing development in the absence of dorsal identity

Development ◽  
2001 ◽  
Vol 128 (5) ◽  
pp. 703-710 ◽  
Author(s):  
D.D. O'Keefe ◽  
J.B. Thomas

The developing wing disc of Drosophila is divided into distinct lineage-restricted compartments along both the anterior/posterior (A/P) and dorsal/ventral (D/V) axes. At compartment boundaries, morphogenic signals pattern the disc epithelium and direct appropriate outgrowth and differentiation of adult wing structures. The mechanisms by which affinity boundaries are established and maintained, however, are not completely understood. Compartment-specific adhesive differences and inter-compartment signaling have both been implicated in this process. The selector gene apterous (ap) is expressed in dorsal cells of the wing disc and is essential for D/V compartmentalization, wing margin formation, wing outgrowth and dorsal-specific wing structures. To better understand the mechanisms of Ap function and compartment formation, we have rescued aspects of the ap mutant phenotype with genes known to be downstream of Ap. We show that Fringe (Fng), a secreted protein involved in modulation of Notch signaling, is sufficient to rescue D/V compartmentalization, margin formation and wing outgrowth when appropriately expressed in an ap mutant background. When Fng and alphaPS1, a dorsally expressed integrin subunit, are co-expressed, a nearly normal-looking wing is generated. However, these wings are entirely of ventral identity. Our results demonstrate that a number of wing development features, including D/V compartmentalization and wing vein formation, can occur independently of dorsal identity and that inter-compartmental signaling, refined by Fng, plays the crucial role in maintaining the D/V affinity boundary. In addition, it is clear that key functions of the ap selector gene are mediated by only a small number of downstream effectors.

Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2411-2418 ◽  
Author(s):  
Jun Wu ◽  
Stephen M. Cohen

The wing imaginal disc comprises the primordia of the adult wing and the dorsal thoracic body wall. During second larval instar, the wing disc is subdivided into distinct domains that correspond to the presumptive wing and body wall. Early activity of the signaling protein Wingless has been implicated in the specification of the wing primordium. Wingless mutants can produce animals in which the wing is replaced by a duplication of thoracic structures. Specification of wing fate has been visualized by expression of the POU-homeodomain protein Nubbin in the presumptive wing territory and by repression of the homeodomain protein Homothorax. We report that repression of the zinc-finger transcription factor Teashirt (Tsh) is the earliest event in wing specification. Repression of Tsh by the combined action of Wingless and Decapentaplegic is required for wing pouch formation and for subsequent repression of Hth. Thus, repression of Tsh defines the presumptive wing earlier in development than repression of Hth, which must therefore be considered a secondary event.


2016 ◽  
Author(s):  
Xiaochun Wang ◽  
Ziguang Liu ◽  
Li hua Jin

ABSTRACTSummary statementThe novel gene anchor is the ortholog of vertebrate GPR155, which contributes to preventing wing disc tissue overgrowth and limiting the phosphorylation of Mad in presumptive veins during the pupal stage.G protein-coupled receptors play a particularly important function in many organisms. The novel Drosophila gene anchor is the ortholog of vertebrate GPR155, and its molecular function and biological process are not yet known, especially in wing development. Knocking down anchor resulted in increased wing size and extra and thickened veins. These abnormal wing phenotypes are similar to those observed in gain-of-function of BMP signaling experiments. We observed that the BMP signaling indicator p-Mad was significantly increased in anchor RNAi-induced wing discs in larvae and that it also abnormally accumulated in intervein regions in pupae. Furthermore, the expression of BMP signaling pathway target genes were examined using a lacZ reporter, and the results indicated that omb and sal were substantially increased in anchor knockdown wing discs. In a study of genetic interactions between Anchor and BMP signaling pathway, the broadened and ectopic vein tissues were rescued by knocking down BMP levels. The results suggested that the function of Anchor is to negatively regulate BMP signaling during wing development and vein formation, and that Anchor targets or works upstream of Dpp.


Genome ◽  
1989 ◽  
Vol 31 (2) ◽  
pp. 612-619 ◽  
Author(s):  
J. Díaz-Benjumea ◽  
M. A. F. González Gaitán ◽  
A. García-Bellido

The developmental study of the wing disc in Drosophila has revealed the progressive appearance of heterogeneities in the anlage formation i.e., of symmetric compartments, of lineage restrictions for vein and intervein regions within compartments, and in mitotic waves. The genetic analysis of alleles in 28 loci that affect vein formation allows us to classify them, according to their phenotypic effects in mutant combinations, in several groups of synergism. These effects include changes in vein differentiation, vein pattern, and growth of the wing anlage. Clonal analyses of mutations of these groups shows that pattern differentiation is associated with changes in cell proliferation dynamics. The study of combinations of mutations from different groups allows us to infer the existence of distinct genetic operations in wing development. A model is presented relating these genetic operations to cell proliferation and cell communication in wing morphogenesis and vein patterning.Key words: pattern formation, morphogenesis, cell proliferation and differentiation.


Development ◽  
2000 ◽  
Vol 127 (11) ◽  
pp. 2383-2393 ◽  
Author(s):  
A. Baonza ◽  
J.F. de Celis ◽  
A. Garcia-Bellido

The function of extramacrochaetae is required during the development of the Drosophila wing in processes such as cell proliferation and vein differentiation. extramacrochaetae encodes a transcription factor of the HLH family, but unlike other members of this family, Extramacrochaetae lacks the basic region that is involved in interaction with DNA. Some phenotypes caused by extramacrochaetae in the wing are similar to those observed when Notch signalling is compromised. Furthermore, maximal levels of extramacrochaetae expression in the wing disc are restricted to places where Notch activity is higher, suggesting that extramacrochaetae could mediate some aspects of Notch signalling during wing development. We have studied the relationships between extramacrochaetae and Notch in wing development, with emphasis on the processes of vein formation and cell proliferation. We observe strong genetic interaction between extramacrochaetae and different components of the Notch signalling pathway, suggesting a functional relationship between them. We show that the higher level of extramacrochaetae expression coincides with the domain of expression of Notch and its downstream gene Enhancer of split-m(beta). The expression of extramacrochaetae at the dorso/ventral boundary and in boundary cells between veins and interveins depends on Notch activity. We propose that at least during vein differentiation and wing margin formation, extramacrochaetae is regulated by Notch and collaborates with other Notch-downstream genes such as Enhancer of split-m(beta).


Development ◽  
2000 ◽  
Vol 127 (21) ◽  
pp. 4729-4741 ◽  
Author(s):  
D. Brentrup ◽  
H. Lerch ◽  
H. Jackle ◽  
M. Noll

The stereotyped pattern of veins in the Drosophila wing is generated in response to local EGF signalling. Mutations in the rhomboid (rho) gene, which encodes a sevenpass membrane protein required to enhance signalling transmitted by the EGF receptor (Egfr), inhibit vein development and disrupt the vein pattern. By contrast, net mutations produce ectopic veins in intervein regions. We have cloned the net gene and show that it encodes a basic HLH protein that probably acts as a transcriptional repressor. net and rho are expressed in mutually exclusive patterns during the development of the wing imaginal disc. Lack of net activity causes rho expression to expand, and vice versa. Furthermore, ectopic expression of net or rho results in their mutual repression and thus suppresses vein formation or generates tube-like wings composed of vein-like tissue. Egfr signalling and net exert mutually antagonising activities during the specification of vein versus intervein fate. While Egfr signalling represses net transcription, net exhibits a two-tiered control by repressing rho transcription and interfering with Egfr signalling downstream of Rho. Our results further suggest that net is required to maintain intervein development by restricting Egfr signalling, which promotes vein development, to the Net-free vein regions of the wing disc.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e65392 ◽  
Author(s):  
Ibrahim El-Shesheny ◽  
Subhas Hajeri ◽  
Ibrahim El-Hawary ◽  
Siddarame Gowda ◽  
Nabil Killiny

Development ◽  
1996 ◽  
Vol 122 (12) ◽  
pp. 4033-4044 ◽  
Author(s):  
K. Yu ◽  
M.A. Sturtevant ◽  
B. Biehs ◽  
V. Francois ◽  
R.W. Padgett ◽  
...  

TGF-beta-related signaling pathways play diverse roles during vertebrate and invertebrate development. A common mechanism for regulating the activity of TGF-beta family members is inhibition by extracellular antagonists. Recently, the Drosophila short gastrulation (sog) gene was shown to encode a predicted diffusible factor which antagonizes signaling mediated by the TGF-beta-like Decapentaplegic (Dpp) pathway in the early blastoderm embryo. sog and dpp, which are among the earliest zygotic genes to be activated, are expressed in complementary dorsal-ventral domains. The opposing actions of sog and dpp in the early embryo have been highly conserved during evolution as their vertebrate counterparts, chordin and BMP-4, function homologously to define neural versus non-neural ectoderm in Xenopus. Here we exploit the genetically sensitive adult wing vein pattern to investigate the generality of the antagonistic relationship between sog and dpp. We show that dpp is expressed in vein primordia during pupal wing development and functions to promote vein formation. In contrast, sog is expressed in complementary intervein cells and suppresses vein formation. sog and dpp function during the same phenocritical periods (i.e. 16–28 hours after pupariation) to influence the vein versus intervein cell fate choice. The conflicting activities of dpp and sog are also revealed by antagonistic dosage-sensitive interactions between these two genes during vein development. Analysis of vein and intervein marker expression in dpp and sog mutant wings suggests that dpp promotes vein fates indirectly by activating the vein gene rhomboid (rho), and that sog functions by blocking an autoactivating Dpp feedback loop. These data support the view that Sog is a dedicated Dpp antagonist.


Author(s):  
J.S. Ryerse

Gap junctions are intercellular junctions found in both vertebrates and invertebrates through which ions and small molecules can pass. Their distribution in tissues could be of critical importance for ionic coupling or metabolic cooperation between cells or for regulating the intracellular movement of growth control and pattern formation factors. Studies of the distribution of gap junctions in mutants which develop abnormally may shed light upon their role in normal development. I report here the distribution of gap junctions in the wing pouch of 3 Drosophila wing disc mutants, vg (vestigial) a cell death mutant, 1(2)gd (lethal giant disc) a pattern abnormality mutant and 1(2)gl (lethal giant larva) a neoplastic mutant and compare these with wildtype wing discs.The wing pouch (the anlagen of the adult wing blade) of a wild-type wing disc is shown in Fig. 1 and consists of columnar cells (Fig. 5) joined by gap junctions (Fig. 6). 14000x EMs of conventionally processed, UA en bloc stained, longitudinally sectioned wing pouches were enlarged to 45000x with a projector and tracings were made on which the lateral plasma membrane (LPM) and gap junctions were marked.


1996 ◽  
Vol 93 (12) ◽  
pp. 5842-5847 ◽  
Author(s):  
R. Yan ◽  
H. Luo ◽  
J. E. Darnell ◽  
C. R. Dearolf

Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4161-4170 ◽  
Author(s):  
R.L. Johnson ◽  
J.K. Grenier ◽  
M.P. Scott

The membrane protein, Patched, plays a critical role in patterning embryonic and imaginal tissues in Drosophila. patched constitutively inactivates the transcription of target genes such as wingless, decapentaplegic, and patched itself. The secreted protein, Hedgehog, induces transcription of target genes by opposing the Patched signaling pathway. Using the Gal4 UAS system we have overexpressed patched in wing imaginal discs and found that high Patched levels, expressed in either normal or ectopic patterns, result in loss of wing vein patterning in both compartments centering at the anterior/posterior border. In addition, patched inhibits the formation of the mechanosensory neurons, the campaniform sensilla, in the wing blade. The patched wing vein phenotype is modulated by mutations in hedgehog and cubitus interruptus (ci). Patched overexpression inhibits transcription of patched and decapentaplegic and post-transcriptionally decreases the amount of Ci protein at the anterior/posterior boundary. In hedgehogMrt wing discs, which express ectopic hedgehog, Ci levels are correspondingly elevated, suggesting that hedgehog relieves patched repression of Ci accumulation. Protein kinase A also regulates Ci; protein kinase A mutant clones in the anterior compartment have increased levels of Ci protein. Thus patched influences wing disc patterning by decreasing Ci protein levels and inactivating hedgehog target genes in the anterior compartment.


Sign in / Sign up

Export Citation Format

Share Document