SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG

Development ◽  
2002 ◽  
Vol 129 (1) ◽  
pp. 253-263 ◽  
Author(s):  
Robert G. Franks ◽  
Chunxin Wang ◽  
Joshua Z. Levin ◽  
Zhongchi Liu

Proper regulation of homeotic gene expression is critical for pattern formation during both animal and plant development. A negative regulatory mechanism ensures that the floral homeotic gene AGAMOUS is only expressed in the center of an Arabidopsis floral meristem to specify stamen and carpel identity and to repress further proliferation of the floral meristem. We report the genetic identification and characterization of a novel gene, SEUSS, that is required in the negative regulation of AGAMOUS. Mutations in SEUSS cause ectopic and precocious expression of AGAMOUS mRNA, leading to partial homeotic transformation of floral organs in the outer two whorls. The effects of seuss mutations are most striking when combined with mutations in LEUNIG, a previously identified repressor of AGAMOUS. More complete homeotic transformation of floral organs and a greater extent of organ loss in all floral whorls were observed in the seuss leunig double mutants. By in situ hybridization and double and triple mutant analyses, we showed that this enhanced defect was caused by an enhanced ectopic and precocious expression of AGAMOUS. Using a map-based approach, we isolated the SEUSS gene and showed that it encodes a novel protein with at least two glutamine-rich domains and a highly conserved domain that shares sequence identity with the dimerization domain of the LIM-domain-binding transcription co-regulators in animals. Based on these molecular and genetic analyses, we propose that SEUSS encodes a regulator of AGAMOUS and functions together with LEUNIG.

Development ◽  
1998 ◽  
Vol 125 (13) ◽  
pp. 2359-2369
Author(s):  
P.C. McSteen ◽  
C.A. Vincent ◽  
S. Doyle ◽  
R. Carpenter ◽  
E.S. Coen

The development of reproductive organs in Antirrhinum depends on the expression of an organ identity gene, plena, in the central domain of the floral meristem. To investigate the mechanism by which plena is regulated, we have characterised three mutants in which the pattern of plena expression is altered. In polypetala mutants, expression of plena is greatly reduced, resulting in a proliferation of petals in place of reproductive organs. In addition, polypetala mutants exhibit an altered pattern of floral organ initiation, quite unlike that seen in loss-of-function plena mutants. This suggests that polypetala normally has two roles in flower development: regulation of plena and control of organ primordia formation. In fistulata mutants, plena is ectopically expressed in the distal domain of petal primordia, resulting in the production of anther-like tissue in place of petal lobes. Flowers of fistulata mutants also show a reduced rate of petal lobe growth, even in a plena mutant background. This implies that fistulata normally has two roles in the distal domain of petal primordia: inhibition of plena expression and promotion of lobe growth. A weak allele of the floral meristem identity gene, floricaula, greatly enhances the effect of fistulata on plena expression, showing that floricaula also plays a role in repression of plena in outer whorls. Taken together, these results show that genes involved in plena regulation have additional roles in the formation of organs, perhaps reflecting underlying mechanisms for coupling homeotic gene expression to morphogenesis.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2079-2086 ◽  
Author(s):  
Rebecca S. Lamb ◽  
Theresa A. Hill ◽  
Queenie K.-G. Tan ◽  
Vivian F. Irish

The Arabidopsis APETALA3 (AP3) floral homeotic gene is required for specifying petal and stamen identities, and is expressed in a spatially limited domain of cells in the floral meristem that will give rise to these organs. Here we show that the floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1) are required for the activation of AP3. The LFY transcription factor binds to a sequence, with dyad symmetry, that lies within a region of the AP3 promoter required for early expression of AP3. Mutation of this region abolishes LFY binding in vitro and in yeast one hybrid assays, but has no obvious effect on AP3 expression in planta. Experiments using a steroid-inducible form of LFY show that, in contrast to its direct transcriptional activation of other floral homeotic genes, LFY acts in both a direct and an indirect manner to regulate AP3 expression. This LFY-induced expression of AP3 depends in part on the function of the APETALA1 (AP1) floral homeotic gene, since mutations in AP1 reduce LFY-dependent induction of AP3 expression. LFY therefore appears to act through several pathways, one of which is dependent on AP1 activity, to regulate AP3 expression.


Science ◽  
1999 ◽  
Vol 285 (5427) ◽  
pp. 585-587 ◽  
Author(s):  
M. A. Busch

Sign in / Sign up

Export Citation Format

Share Document