A combination of chain and neurophilic migration involving the adhesion molecule TAG-1 in the caudal medulla

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Katerina Kyriakopoulou ◽  
Isabel de Diego ◽  
Marion Wassef ◽  
Domna Karagogeos

Neuronal populations destined to form several precerebellar nuclei are generated by the rhombic lip in the caudal hindbrain. These immature neurons gather into the olivary and the superficial migratory streams and migrate tangentially around the hindbrain to reach their final position. We focus on the cells of the superficial stream that migrate ventrally, cross the midline and form the lateral reticular (LRN) and external cuneate (ECN) nuclei. The cells of the superficial steam are preceded by long leading processes; in the dorsal neural tube, they migrate in close apposition to each other and form distinct chains, whereas they disperse and follow Tuj-1 immunoreactive axons on reaching the ventral hindbrain. This suggests that, in the superficial stream, neuronal migration combines both homotypic and heterotypic mechanisms. We also show that the adhesion molecule TAG-1 is expressed by the migrating cells. Blocking TAG-1 function results in alterations in the superficial migration, indicating that TAG-1 is involved in the superficial migration. Other members of the immunoglobulin superfamily and known ligands of TAG-1 are also expressed in the region of the migration but are not involved in the migration. These findings provide evidence that the TAG-1 protein is involved as a contact-dependent signal guiding not only axonal outgrowth but also cell migration.

Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 297-306 ◽  
Author(s):  
I. de Diego ◽  
K. Kyriakopoulou ◽  
D. Karagogeos ◽  
M. Wassef

Neurons destined to form several precerebellar nuclei are generated in the dorsal neuroepithelium (rhombic lip) of caudal hindbrain. They form two ventrally directed migratory streams, which behave differently. While neurons in the superficial migration migrate in a subpial position and cross the midline to settle into the contralateral hindbrain, neurons in the olivary migration travel deeper in the parenchyma and stop ipsilaterally against the floor plate. In the present study, we compared the behavior of the two neuronal populations in an organotypic culture system that preserves several aspects of their in vivo environment. Both migrations occurred in mouse hindbrain explants dissected at E11.5 even when the floor plate was ablated at the onset of the culture period, indicating that they could rely on dorsoventral cues already distributed in the neural tube. Nevertheless, the local constraints necessary for the superficial migration were more specific than for the olivary migration. Distinct chemoattractive and chemorespulsive signal were found to operate on the migrations. The floor plate exhibited a strong chemoattractive influence on both migrations, which deviated from their normal path in the direction of ectopic floor plate fragments. It was also found to produce a short-range stop signal and to induce inferior olive aggregation. The ventral neural tube was also found to inhibit or slow down the migration of olivary neurons. Interestingly, while ectopic sources of netrin were found to influence both migrations, this effect was locally modulated and affected differentially the successive phases of migration. Consistent with this observation, while neurons in the superficial migration expressed the Dcc-netrin receptor, the migrating olivary neurons did not express Dcc before they reached the midline. Our observations provide a clearer picture of the hierarchy of environmental cues that influence the morphogenesis of these precerebellar nuclei.


1995 ◽  
Vol 28 (1) ◽  
pp. 51-69 ◽  
Author(s):  
Yoshihiro Yoshihara ◽  
Miwa Kawasaki ◽  
Atsushi Tamada ◽  
Shigekazu Nagata ◽  
Hiroyuki Kagamiyama ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2600-2609 ◽  
Author(s):  
Malgorzata B. Sobocka ◽  
Tomasz Sobocki ◽  
Probal Banerjee ◽  
Cipora Weiss ◽  
Julie I. Rushbrook ◽  
...  

Abstract This study demonstrates that the human platelet F11 receptor (F11R) functions as an adhesion molecule, and this finding is confirmed by the structure of the protein as revealed by molecular cloning. The F11R is a 32-/35-kd protein duplex that serves as the binding site through which a stimulatory monoclonal antibody causes platelet aggregation and granule secretion. A physiological role for the F11R protein was demonstrated by its phosphorylation after the stimulation of platelets by thrombin and collagen. A pathophysiological role for the F11R was revealed by demonstrating the presence of F11R-antibodies in patients with thrombocytopenia. Adhesion of platelets through the F11R resulted in events characteristic of the action of cell adhesion molecules (CAMs). To determine the structure of this protein, we cloned the F11R cDNA from human platelets. The predicted amino acid sequence demonstrated that it is an integral membrane protein and an immunoglobulin superfamily member containing 2 extracellular C2-type domains. The structure of the F11R as a member of a CAM family of proteins and its activity in mediating adhesion confirm each another. We conclude that the F11R is a platelet-membrane protein involved in 2 distinct processes initiated on the platelet surface. The first is antibody-induced platelet aggregation and secretion that are dependent on both the FcγRII and the GPIIb/IIIa integrin and that may be involved in pathophysiological processes associated with certain thrombocytopenias. The second is an F11R-mediated platelet adhesion that is not dependent on either the FcγRII or the fibrinogen receptor and that appears to play a role in physiological processes associated with platelet adhesion and aggregation.


Blood ◽  
2006 ◽  
Vol 108 (6) ◽  
pp. 2064-2071 ◽  
Author(s):  
Gloria Lee ◽  
Annie Lo ◽  
Sarah A. Short ◽  
Tosti J. Mankelow ◽  
Frances Spring ◽  
...  

AbstractErythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule 4 (ICAM-4), an immunoglobulin superfamily member, participates in island formation. Earlier, we identified αV integrins as ICAM-4 counterreceptors. Because macrophages express αV, ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knock-out mice and developed quantitative, live cell techniques for harvesting intact islands and for re-forming islands in vitro. We observed a 47% decrease in islands reconstituted from ICAM-4 null marrow compared to wild-type marrow. We also found a striking decrease in islands formed in vivo in knock-out mice. Further, peptides that block ICAM-4/αV adhesion produced a 53% to 57% decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage αV functions in island integrity. Importantly, we documented that αV integrin is expressed in macrophages isolated from erythroblastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/αV adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.


2004 ◽  
Vol 1 (1) ◽  
pp. 65-72 ◽  
Author(s):  
G. BARBIN ◽  
M.S. AIGROT ◽  
P. CHARLES ◽  
A. FOUCHER ◽  
M. GRUMET ◽  
...  

Of the axonal signals influencing myelination, adhesion molecules expressed at the axonal surface are strong candidates to mediate interactions between myelinating cells and axons. The recognition cell-adhesion molecule L1, a member of the immunoglobulin superfamily has been shown to play important roles in neuronal migration and survival, and in PNS myelination. We have investigated the role of axonally expressed L1 in CNS myelination. In co-cultures of myelinating oligodendrocytes and neurons derived from murine brain, we demonstrate that, before myelination, L1 immunoreactivity is confined to neurites. After myelination commences, L1 expression is downregulated on myelinated axons and adjacent, but not yet myelinated, internodes. Interfering with L1 before the onset of myelination, by adding either anti-L1 antibody or L1-Fc fusion proteins to the culture medium, inhibits myelination. In addition, in purified cultures of oligodendrocytes, L1-Fc fusion protein prevents lysophosphatidic acid-induced activation of the mitogen-activated kinase (MAP)-kinase pathway. Together, our data indicate that L1 is involved in the initiation of CNS myelination, and that this effect might involve the dephosphorylation of oligodendroglial phosphoproteins.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 580-580
Author(s):  
Gloria Lee ◽  
Annie Lo ◽  
Sarah Short ◽  
Tosti Mankelow ◽  
Stephen Parsons ◽  
...  

Abstract Erythroblasts proliferate, differentiate and enucleate within erythroblastic islands, three dimensional structures comprised of developing erythroblasts surrounding a central macrophage. Collective evidence suggests that erythroblastic islands are highly specialized bone marrow subcompartments where adhesion events, in concert with cytokines, play critical roles in regulating erythropoiesis and apoptosis. ICAM-4, a recently characterized member of the immunoglobulin superfamily, is expressed early in erythroid differentiation. This adhesion molecule interacts with multiple integrin binding partners, including alpha4beta1 and alphaV integrins (alphaVbeta1, alphaVbeta3 and alphaVbeta5). Since erythroblasts express alpha4beta1 and ICAM-4 and macrophages exhibit alphaV, ICAM-4 is an attractive candidate for mediating erythroblast-erythroblast and erythroblast-macrophage attachments. A molecular model of ICAM-4 derived from the crystal structure of closely related ICAM-2 presents the extracellular region of ICAM-4 as two Ig-like domains comprised of A,B,C,D,E,F, and G strands. Employing targeted mutagenesis of surface-exposed amino acid residues, we earlier identified a patch or footprint that mediates adhesion to alphaV integrins comprised of three A strand residues and five G strand residues on N-terminal domain 1. To explore whether ICAM-4 attachments are active in erythroblastic islands we first developed a quantitative live cell assay for reforming islands from single cell suspensions of freshly harvested mouse bone marrow. Islands and their cellular components were identified and quantitated by three-color immunofluorescent microscopy employing fluoresceinated erythroid-specific TER119 antibody, macrophage-specific F4/80 antibody and a DNA probe. To determine the amount of variation in number of islands reformed from a single cell suspension of 1 x 105 cells, we counted islands at the beginning and conclusion of experiments on five different mice. The island numbers were very reproducible and equaled 1000 +/− 158. We then tested the effects of two synthetic peptides that we have previously shown block ICAM-4/alphaV adhesion: peptides FWV and ATSR, corresponding to sequences of the A and G strands of ICAM-4 domain 1, respectively. Both peptides caused a marked, concentration dependent decrease in the percentage of islands formed. 2mM ATSR inhibited island formation by 75% while 2mM FWV inhibited island formation by 70%. In marked contrast, a strand D control peptide had minimal to no effect on island formation. Our data strongly suggest that erythroblast ICAM-4 binding to macrophage alphaV is critical for erythroblastic island formation. We postulate that this newly identified receptor-counterreceptor interaction may be important not only for adhesive integrity of the island structure but also for initiating intracellular signaling essential for normal erythroid terminal differentiation.


Blood ◽  
2000 ◽  
Vol 95 (8) ◽  
pp. 2600-2609
Author(s):  
Malgorzata B. Sobocka ◽  
Tomasz Sobocki ◽  
Probal Banerjee ◽  
Cipora Weiss ◽  
Julie I. Rushbrook ◽  
...  

This study demonstrates that the human platelet F11 receptor (F11R) functions as an adhesion molecule, and this finding is confirmed by the structure of the protein as revealed by molecular cloning. The F11R is a 32-/35-kd protein duplex that serves as the binding site through which a stimulatory monoclonal antibody causes platelet aggregation and granule secretion. A physiological role for the F11R protein was demonstrated by its phosphorylation after the stimulation of platelets by thrombin and collagen. A pathophysiological role for the F11R was revealed by demonstrating the presence of F11R-antibodies in patients with thrombocytopenia. Adhesion of platelets through the F11R resulted in events characteristic of the action of cell adhesion molecules (CAMs). To determine the structure of this protein, we cloned the F11R cDNA from human platelets. The predicted amino acid sequence demonstrated that it is an integral membrane protein and an immunoglobulin superfamily member containing 2 extracellular C2-type domains. The structure of the F11R as a member of a CAM family of proteins and its activity in mediating adhesion confirm each another. We conclude that the F11R is a platelet-membrane protein involved in 2 distinct processes initiated on the platelet surface. The first is antibody-induced platelet aggregation and secretion that are dependent on both the FcγRII and the GPIIb/IIIa integrin and that may be involved in pathophysiological processes associated with certain thrombocytopenias. The second is an F11R-mediated platelet adhesion that is not dependent on either the FcγRII or the fibrinogen receptor and that appears to play a role in physiological processes associated with platelet adhesion and aggregation.


2004 ◽  
Vol 27 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Joshua A. Weiner ◽  
Sonya J. Koo ◽  
Stéphane Nicolas ◽  
Sandrine Fraboulet ◽  
Samuel L. Pfaff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document