Gaseous Transmitter Regulation of Catecholamine Secretion by hypoxia in Murine Adrenal Chromaffin Cells

Author(s):  
Anna Gridina ◽  
Xiaoyu Su ◽  
Shakil A. Khan ◽  
Ying-Jie Peng ◽  
Benjamin L Wang ◽  
...  

Emerging evidence suggests that gaseous molecules, carbon monoxide (CO) and hydrogen sulfide (H2S) generated by heme oxygenase-(HO)-2 and cystathionine γ-lyase (CSE), respectively, function as transmitters in the nervous system. Present study examined the roles of CO and H2S in hypoxia-induced catecholamine (CA) release from adrenal medullary chromaffin cells (AMC). Studies were performed on AMC from adult (≥6 weeks of age) wild type (WT), HO-2 null, CSE null and HO-2/CSE double null mice of either gender. CA secretion was determined by carbon fiber amperometry and [Ca2+]i by microflurometry using Fura-2. HO-2- and CSE immunoreactivities were seen in WT AMC, which were absent in HO-2 and CSE null mice. Hypoxia (medium pO2 30-38 mmHg) evoked CA release and elevated [Ca2+]i. The magnitude of hypoxic response was greater in HO-2 null mice and in HO inhibitor treated WT AMC compared to controls. H2S levels were elevated in HO-2 null AMC. Either pharmacological inhibition or genetic deletion of CSE prevented the augmented hypoxic responses of HO-2 null AMC and H2S donor rescued AMC responses to hypoxia in HO-2/CSE double null mice. CORM-3, a CO donor, prevented the augmented hypoxic responses in WT and HO-2 null AMC. CO donor reduced H2S levels in WT AMC. The effects of CO donor were blocked by either ODQ or 8pCT, inhibitors of soluble guanylyl cyclase (SGC) or protein kinase G, respectively. These results suggest that HO-2-derived CO inhibits hypoxia-evoked CA secretion from adult murine AMC involving soluble guanylyl cyclase (SGC)-protein kinase G (PKG)-dependent regulation of CSE- derived H2S.

2008 ◽  
Vol 28 (10) ◽  
pp. 1803-1810 ◽  
Author(s):  
Zongmin Zhou ◽  
Nazish Sayed ◽  
Anastasia Pyriochou ◽  
Charis Roussos ◽  
David Fulton ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Andrew Holt ◽  
Danielle Martin ◽  
Patti Shaver ◽  
Shaquria Adderley ◽  
Joshua Stone ◽  
...  

Atherosclerotic lower extremity peripheral artery disease (PAD) is among the most prevalent, morbid and mortal of all cardiovascular disorders. Pathologic arterial smooth muscle (ASM) cell migration is a major component of atherogenic PAD and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of PAD and other vascular growth disorders. In this study we hypothesized that the novel, heme-independent soluble guanylyl cyclase activator BAY 60-2770 (BAY) inhibits ASM cell migration through phosphorylation of the protein kinase G (PKG) target and actin-binding protein vasodilator-stimulated phosphoprotein (VASP). In a rat model of injury-induced arterial growth, BAY significantly reduced neointima formation and luminal narrowing compared to vehicle (Veh)-treated control arteries after 2 weeks. Using rat and human ASM cells BAY significantly attenuated cell migration, reduced G:F actin, and increased cyclic GMP content, PKG activity and phosphorylated VASP at Ser239 (pVASP.S239) compared to Veh controls. Using site-directed mutagenesis, both full-length VASP-overexpressing (wild type, WT) and VASP.S239 phosphorylation-resistant mutants showed significantly reduced cell migration compared to naïve controls, however, there was no effect on cell migration between either VASP transfected group in the presence of BAY. Interestingly, both VASP mutants showed significantly increased PKG activity compared to naïve cells, and in turn pharmacologic PKG blockade in the presence of BAY fully reversed the inhibitory effect of BAY alone on cell migration. These data suggest BAY has capacity to inhibit ASM cell migration through cyclic GMP/PKG/VASP signaling yet through mechanisms independent of pVASP.S239. Findings from this study implicate BAY via cyclic GMP/PKG/VASP as a potential pharmacotherapeutic agent against aberrant ASM growth disorders such as PAD.


1997 ◽  
Vol 73 ◽  
pp. 157
Author(s):  
Toshihiko Yanagita ◽  
Hideyuki Kobayashi ◽  
Keizou Masumoto ◽  
Ryuichi Yamamoto ◽  
Tomoaki Yuhi ◽  
...  

2007 ◽  
Vol 7 (S1) ◽  
Author(s):  
Andreas Papapetropoulos ◽  
Zongmin Zhou ◽  
Nazish Sayed ◽  
Anastasia Pyriochou ◽  
Charis Roussos ◽  
...  

1997 ◽  
Vol 73 ◽  
pp. 156
Author(s):  
Ryuichi Yamamoto ◽  
Hideyuki Kobayashi ◽  
Toshihiko Yanagita ◽  
Keizo Masumoto ◽  
Hiroki Yokoo ◽  
...  

2002 ◽  
Vol 74 (4) ◽  
pp. 1674-1684 ◽  
Author(s):  
Toshihiko Yanagita ◽  
Hideyuki Kobayashi ◽  
Ryuichi Yamamoto ◽  
Hiroaki Kataoka ◽  
Hiroki Yokoo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document