Pitx2cpatterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions

Development ◽  
2002 ◽  
Vol 129 (21) ◽  
pp. 5081-5091 ◽  
Author(s):  
Chengyu Liu ◽  
Wei Liu ◽  
Jennifer Palie ◽  
Mei Fang Lu ◽  
Nigel A. Brown ◽  
...  

Inactivation of the left-right asymmetry gene Pitx2 has been shown, in mice, to result in right isomerism with associated defects that are similar to that found in humans. We show that the Pitx2c isoform is expressed asymmetrically in a presumptive secondary heart field within the branchial arch and splanchnic mesoderm that contributes to the aortic sac and conotruncal myocardium. Pitx2c was expressed in left aortic sac mesothelium and in left splanchnic and branchial arch mesoderm near the junction of the aortic sac and branchial arch arteries. Mice with an isoform-specific deletion of Pitx2c had defects in asymmetric remodeling of the aortic arch vessels. Fatemapping studies using a Pitx2 cre recombinase knock-in allele showed that daughters ofPitx2-expressing cells populated the right and left ventricles,atrioventricular cushions and valves and pulmonary veins. In Pitx2mutant embryos, descendents of Pitx2-expressing cells failed to contribute to the atrioventricular cushions and valves and the pulmonary vein,resulting in abnormal morphogenesis of these structures. Our data provide functional evidence that the presumptive secondary heart field, derived from branchial arch and splanchnic mesoderm, patterns the forming outflow tract and reveal a role for Pitx2c in aortic arch remodeling. Moreover, our findings suggest that a major function of the Pitx2-mediated left right asymmetry pathway is to pattern the aortic arches, outflow tract and atrioventricular valves and cushions.

2003 ◽  
Vol 228 (2) ◽  
pp. 152-160 ◽  
Author(s):  
T. Mesud Yelbuz ◽  
Karen L. Waldo ◽  
Xiaowei Zhang ◽  
Marzena Zdanowicz ◽  
Jeremy Parker ◽  
...  

2007 ◽  
Vol 308 (2) ◽  
pp. 421-437 ◽  
Author(s):  
Yi-Hui Chen ◽  
Mamoru Ishii ◽  
Jingjing Sun ◽  
Henry M. Sucov ◽  
Robert E. Maxson

Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3179-3188 ◽  
Author(s):  
Karen L. Waldo ◽  
Donna H. Kumiski ◽  
Kathleen T. Wallis ◽  
Harriett A. Stadt ◽  
Mary. R. Hutson ◽  
...  

The primary heart tube is an endocardial tube, ensheathed by myocardial cells, that develops from bilateral primary heart fields located in the lateral plate mesoderm. Earlier mapping studies of the heart fields performed in whole embryo cultures indicate that all of the myocardium of the developed heart originates from the primary heart fields. In contrast, marking experiments in ovo suggest that the atrioventricular canal, atria and conotruncus are added secondarily to the straight heart tube during looping. The results we present resolve this issue by showing that the heart tube elongates during looping, concomitant with accretion of new myocardium. The atria are added progressively from the caudal primary heart fields bilaterally, while the myocardium of the conotruncus is elongated from a midline secondary heart field of splanchnic mesoderm beneath the floor of the foregut. Cells in the secondary heart field express Nkx2.5 and Gata-4, as do the cells of the primary heart fields. Induction of myocardium appears to be unnecessary at the inflow pole, while it occurs at the outflow pole of the heart. Accretion of myocardium at the junction of the inflow myocardium with dorsal mesocardium is completed at stage 12 and later (stage 18) from the secondary heart field just caudal to the outflow tract. Induction of myocardium appears to move in a caudal direction as the outflow tract translocates caudally relative to the pharyngeal arches. As the cells in the secondary heart field begin to move into the outflow or inflow myocardium,they express HNK-1 initially and then MF-20, a marker for myosin heavy chain. FGF-8 and BMP-2 are present in the ventral pharynx and secondary heart field/outflow myocardium, respectively, and appear to effect induction of the cells in a manner that mimics induction of the primary myocardium from the primary heart fields. Neither FGF-8 nor BMP-2 is present as inflow myocardium is added from the primary heart fields. The addition of a secondary myocardium to the primary heart tube provides a new framework for understanding several null mutations in mice that cause defective heart development.


2010 ◽  
Vol 18 (3) ◽  
pp. 480-485 ◽  
Author(s):  
Peng Li ◽  
Mohammad Pashmforoush ◽  
Henry M. Sucov

2021 ◽  
Vol 8 (4) ◽  
pp. 42
Author(s):  
Sonia Stefanovic ◽  
Heather C. Etchevers ◽  
Stéphane Zaffran

Anomalies in the cardiac outflow tract (OFT) are among the most frequent congenital heart defects (CHDs). During embryogenesis, the cardiac OFT is a dynamic structure at the arterial pole of the heart. Heart tube elongation occurs by addition of cells from pharyngeal, splanchnic mesoderm to both ends. These progenitor cells, termed the second heart field (SHF), were first identified twenty years ago as essential to the growth of the forming heart tube and major contributors to the OFT. Perturbation of SHF development results in common forms of CHDs, including anomalies of the great arteries. OFT development also depends on paracrine interactions between multiple cell types, including myocardial, endocardial and neural crest lineages. In this publication, dedicated to Professor Andriana Gittenberger-De Groot and her contributions to the field of cardiac development and CHDs, we review some of her pioneering studies of OFT development with particular interest in the diverse origins of the many cell types that contribute to the OFT. We also discuss the clinical implications of selected key findings for our understanding of the etiology of CHDs and particularly OFT malformations.


Development ◽  
2011 ◽  
Vol 138 (11) ◽  
pp. 2389-2398 ◽  
Author(s):  
D. Hami ◽  
A. C. Grimes ◽  
H.-J. Tsai ◽  
M. L. Kirby

2021 ◽  
Vol 9 (1.3) ◽  
pp. 7901-7904
Author(s):  
Gayathri Pandurangam ◽  
◽  
D. Naga Jyothi ◽  
Asra Anjum ◽  
S. Saritha ◽  
...  

Introduction: The variation in the aortic arch is well known and it has been demonstrated by number of researchers. Changes involved in the development of aortic arch system such as regression, retention or reappearance result in the variation in branching pattern of aortic arch. Variations of the branches of aortic arch are due to alteration of branchial arch arteries during embryonic period. The most common classical branching pattern of the aortic arch in humans comprises of three great vessels, which includes Brachiocephalic trunk, Left Common Carotid artery and Left Subclavian artery. Aim: The study is to determine the embryological basis correlating with clinical application and surgical procedures. Materials and Methods: A study was conducted in 50 formalin fixed cadaveric hearts, during a period of two years. In the routine dissection for 1st MBBS and also museum specimens we encountered 3variations in the branches of arch of aorta. Results: The variations in aortic arch branching pattern were observed in 4 cadaveric hearts (8%). Conclusion: The wide spectrum of variation in the human aortic arch and its branches offer valuable information to catheterize in endovascular surgery for diagnostic and surgical procedures in the thorax, head and neck regions. KEY WORDS: Aortic Arch (AA), Left Common Carotid (LCCA), Left Subclavian (LSA), Brachiocephalic Trunk (BCT), left vertebral artery(LVA).


2021 ◽  
Vol 28 (7) ◽  
pp. 1058-1060
Author(s):  
Fazal ur Rehman ◽  
◽  
Sabiha Khan ◽  
Waqas Ali ◽  
Asif Ali Khuhro ◽  
...  

Congenital aortic arch malformations manifest a broad-spectrum of differences and abnormalities that come from disturbed embryogenesis of branchial arches. Current case was a 10 months old baby girl with length of 69 cm (less than –3 SD) and weight of 5.5 kg (less than –3 SD). The patient had history of recurrent lower respiratory tract infections since the time of birth and failure to gain adequate weight since the time of birth. The patient has been having multiple check-ups with registered medical practitioners in the nearby locality and multiple courses of antibiotics with only partial resolution of symptoms. The 2-D echocardiogram showed her to be a case of supracardiac type of “Total Anomalous Pulmonary Venous Return (TAPVR)”. All pulmonary veins making a confluence and draining into the right atrium. Significant turbulence observed at the level of superior vena cava to right atrium junction. A level of obstruction was recorded at the junction of the confluence of pulmonary veins and the vertical vein. There was aberrant right subclavian artery from the aortic arch as its third branch with no obstruction or aneurysm formation, having retrotracheal and esophageal course.


2019 ◽  
Vol 28 (14) ◽  
pp. 2295-2308 ◽  
Author(s):  
Daniela Alfano ◽  
Alessandra Altomonte ◽  
Claudio Cortes ◽  
Marchesa Bilio ◽  
Robert G Kelly ◽  
...  

Abstract Tbx1, the major candidate gene for DiGeorge or 22q11.2 deletion syndrome, is required for efficient incorporation of cardiac progenitors of the second heart field (SHF) into the heart. However, the mechanisms by which TBX1 regulates this process are still unclear. Here, we have used two independent models, mouse embryos and cultured cells, to define the role of TBX1 in establishing morphological and dynamic characteristics of SHF in the mouse. We found that loss of TBX1 impairs extracellular matrix (ECM)-integrin-focal adhesion (FA) signaling in both models. Mosaic analysis in embryos suggested that this function is non-cell autonomous, and, in cultured cells, loss of TBX1 impairs cell migration and FAs. Additionally, we found that ECM-mediated integrin signaling is disrupted upon loss of TBX1. Finally, we show that interfering with the ECM-integrin-FA axis between E8.5 and E9.5 in mouse embryos, corresponding to the time window within which TBX1 is required in the SHF, causes outflow tract dysmorphogenesis. Our results demonstrate that TBX1 is required to maintain the integrity of ECM-cell interactions in the SHF and that this interaction is critical for cardiac outflow tract development. More broadly, our data identifies a novel TBX1 downstream pathway as an important player in SHF tissue architecture and cardiac morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document