scholarly journals Suppressor of fused controls cerebellum granule cell proliferation by suppressing Fgf8 and spatially regulating Gli proteins

Development ◽  
2020 ◽  
Vol 147 (3) ◽  
pp. dev170274
Author(s):  
Tayyaba Jiwani ◽  
Jinny J. Kim ◽  
Norman D. Rosenblum
2005 ◽  
Vol 64 (3) ◽  
pp. 194-201 ◽  
Author(s):  
Maria Thom ◽  
Lillian Martinian ◽  
Gareth Williams ◽  
Kai Stoeber ◽  
Sanjay M. Sisodiya

Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3585-3596 ◽  
Author(s):  
D. Engelkamp ◽  
P. Rashbass ◽  
A. Seawright ◽  
V. van Heyningen

Post-mitotic neurons generated at the rhombic lip undertake long distance migration to widely dispersed destinations, giving rise to cerebellar granule cells and the precerebellar nuclei. Here we show that Pax6, a key regulator in CNS and eye development, is strongly expressed in rhombic lip and in cells migrating away from it. Development of some structures derived from these cells is severely affected in Pax6-null Small eye (Pax6(Sey)/Pax6(Sey)) embryos. Cell proliferation and initial differentiation seem unaffected, but cell migration and neurite extension are disrupted in mutant embryos. Three of the five precerebellar nuclei fail to form correctly. In the cerebellum the pre-migratory granule cell sub-layer and fissures are absent. Some granule cells are found in ectopic positions in the inferior colliculus which may result from the complete absence of Unc5h3 expression in Pax6(Sey)/Pax6(Sey) granule cells. Our results suggest that Pax6 plays a strong role during hindbrain migration processes and at least part of its activity is mediated through regulation of the netrin receptor Unc5h3.


1989 ◽  
Vol 108 (2) ◽  
pp. 607-611 ◽  
Author(s):  
P W Mason ◽  
J W Bigbee ◽  
G H DeVries

Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.


1993 ◽  
Vol 109 (2) ◽  
pp. 129-140 ◽  
Author(s):  
M.L. Kent ◽  
M.D. Powell ◽  
D. Kieser ◽  
G.E. Hoskins ◽  
D.J. Speare ◽  
...  

2021 ◽  
Vol 118 (28) ◽  
pp. e2026421118
Author(s):  
Tenghan Zhuang ◽  
Boyan Zhang ◽  
Yihong Song ◽  
Fan Huang ◽  
Wangfei Chi ◽  
...  

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.


2021 ◽  
Vol 22 (6) ◽  
pp. 2994
Author(s):  
Xiaodan Jiao ◽  
Maryam Rahimi Balaei ◽  
Ejlal Abu-El-Rub ◽  
Filippo Casoni ◽  
Hassan Pezeshgi Modarres ◽  
...  

Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH–MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.


Sign in / Sign up

Export Citation Format

Share Document