gli proteins
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 4)

2021 ◽  
Vol 22 (24) ◽  
pp. 13338
Author(s):  
Qing Zhang ◽  
Jin Jiang

The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.


2021 ◽  
Vol 17 ◽  
Author(s):  
Durjoy Majumder

Background: GLI proteins play a significant role in the transduction of the Hedgehog (Hh) signaling pathway. A variety of human cancers, including the brain, gastrointestinal, lung, breast, and prostate cancers, demonstrate inappropriate activation of this pathway. GLI helps proliferation and has an inhibitory role in the differentiation of hematopoietic stem cells. Malignancies may have a defect in differentiation. Different types of malignancies and undifferentiated cells have a low level of HLA expression on their cell surface. Objective: Human Leukocytic Antigen (HLA) downregulation is frequently observed in cancer cells. This work is aimed to hypothesize whether this downregulation of HLA molecules is GLI oncoprotein mediated or not. To understand the roles of different types of GLI oncoproteins on different classes of HLA transcriptional machinery was carried out through structure-based modeling and molecular docking studies. Methods: To investigate the role of GLI in HLA expression /downregulation is Hh-GLI mediated or not, molecular docking based computational interaction studies were performed between different GLI proteins (GLI1, GLI2, and GLI3) with TATA box binding protein (TBP) and compare the binding efficiencies of different HLA gene (both HLA class I and –II) regulating transcription factors (RelA, RFX5, RFXAP, RFXANK, CIITA, CREB1, and their combinations) with TBP. Due unavailability of 3D protein structures of GLI2 and cyclin D2 (a natural ligand of GLI1) were modelled followed by structural validation by Ramachandran plot analysis. Results: GLI proteins especially, GLI1 and GLI2, have almost similar binding energy of RFX5-RFXANK-RFXAP and CIITA multi-protein complex to TBP but has lower binding energy between RelA to TBP. Conclusion: This study suggests that HLA class I may not be downregulated by GLI; however, over-expression of GLI1 is may be responsible for HLA class II downregulation. Thus this protein may be responsible for the maintenance of the undifferentiated state of malignant cells. This study also suggests the implicative role of GLI1 in the early definitive stage of hematopoiesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254011
Author(s):  
Yu-Hao Chang ◽  
Hoi-Lam Tam ◽  
Meng-Chien Lu ◽  
Huei-Sheng Huang

Patients with urothelial carcinoma (UC) experience gemcitabine resistance is a critical issue. The role of hedgehog pathway in the problem was explored. The expressions of phospho-AKTser473, phospho-GSK3βser9 and Gli2 were up-regulated in gemcitabine-resistant NTUB1 (NGR) cells. Without hedgehog ligands, Gli proteins can be phosphorylated by GSK3β kinase to inhibit their downstream regulations. Furthermore, the GSK3β kinase can be phosphorylated by AKT at its Ser9 residue to become an inactive kinase. Therefore, overexpression of AKT1, Flag-GSKS9D (constitutively inactive form) or active Gli2 (GLI2ΔN) in NTUB1 cells could activate Gli2 pathway to enhance migration/invasion ability and increase gemcitabine resistance, respectively. Conversely, overexpression of Flag-GSKS9A (constitutively active form) or knockdown of Gli2 could suppress Gli2 pathway, and then reduce gemcitabine resistance in NGR cells. Therefore, we suggest gemcitabine-activated AKT/GSK3β pathway can elicit Gli2 activity, which leads to enhanced migration/invasion ability and resistance to gemcitabine therapy in UC patients. The non-canonical hedgehog pathway should be evaluated in the therapy to benefit UC patients.


2021 ◽  
Vol 118 (28) ◽  
pp. e2026421118
Author(s):  
Tenghan Zhuang ◽  
Boyan Zhang ◽  
Yihong Song ◽  
Fan Huang ◽  
Wangfei Chi ◽  
...  

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.


2021 ◽  
Author(s):  
Rachel K. Lex ◽  
Weiqiang Zhou ◽  
Zhicheng Ji ◽  
Kristin N. Falkenstein ◽  
Kaleigh E. Schuler ◽  
...  

In the absence of Hedgehog (HH) signaling, GLI proteins are post-translationally modified within cilia into transcriptional repressors that subsequently prevent sub-threshold activation of HH target genes. GLI repression is presumably important for preventing precocious expression of target genes before the onset of HH pathway activation, a presumption that underlies the pre-patterning model of anterior-posterior limb polarity. Here, we report that GLI3 repressor is abundant and binds to target genes in early limb development. However, contrary to expectations, GLI3 repression neither regulates the activity of GLI enhancers nor expression of HH target genes as it does after HH signaling has been established. Within the cilia, the transition to active GLI repression is accompanied by increases in axonemal GLI3 localization, possibly signifying altered GLI3 processing. Together, our results demonstrate that GLI3 repression does not prevent precocious activation of HH target genes, or have a pre-patterning role in regulating anterior-posterior limb polarity.


2021 ◽  
Vol 22 (3) ◽  
pp. 1042
Author(s):  
Sidney Iriana ◽  
Kumari Asha ◽  
Miroslava Repak ◽  
Neelam Sharma-Walia

The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Natalia Garcia ◽  
Ayman Al-Hendy ◽  
Edmund C. Baracat ◽  
Katia Candido Carvalho ◽  
Qiwei Yang

Uterine leiomyosarcoma (LMS) is an aggressive tumor that presents a poor prognosis, high rates of recurrence, and metastasis. Because of its rarity, there is no information available concerning LMS molecular mechanisms of origin and development. Here, we assessed the expression profile of Hedgehog (HH) signaling pathway markers and the effects of their pharmacological inhibition on uterine smooth muscle (UTSM), leiomyoma, and LMS cells. Additionally, we also evaluated the effects of DNMTs inhibition on LMS cell behavior. Cell proliferation, migration and apoptosis rates were evaluated by MTT, Scratch, and Annexin V assays, respectively. RNA expression and protein levels were assessed by qRT-PCR and Western blot. We found that SMO and GLIs (1, 2, and 3) expression was upregulated in LMS cells, with increased nuclear levels of GLI proteins. Treatment with LDE225 (SMOi) and Gant61 (GLIi) resulted in a significant reduction in Glis protein levels in LMS (p < 0.05). Additionally, the expression of DNMT (1, 3a, and 3b), as well as GLI1 nuclear expression, was significantly decreased after treatment with HH inhibitor in LMS cells. Our results showed that blocking of SMO, GLI, and DNMTs is able to inhibit LMS proliferation, migration, and invasion. Importantly, the combination of those treatments exhibited a potentiated effect on LMS malignant features due to HH pathway deactivation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jamie C Little ◽  
Elisa Garcia-Garcia ◽  
Amanda Sul ◽  
Daniel Kalderon

Extracellular Hedgehog (Hh) proteins induce transcriptional changes in target cells by inhibiting the proteolytic processing of full-length Drosophila Ci or mammalian Gli proteins to nuclear transcriptional repressors and by activating the full-length Ci or Gli proteins. We used Ci variants expressed at physiological levels to investigate the contributions of these mechanisms to dose-dependent Hh signaling in Drosophila wing imaginal discs. Ci variants that cannot be processed supported a normal pattern of graded target gene activation and the development of adults with normal wing morphology, when supplemented by constitutive Ci repressor, showing that Hh can signal normally in the absence of regulated processing. The processing-resistant Ci variants were also significantly activated in the absence of Hh by elimination of Cos2, likely acting through binding the CORD domain of Ci, or PKA, revealing separate inhibitory roles of these two components in addition to their well-established roles in promoting Ci processing.


2020 ◽  
Vol 477 (17) ◽  
pp. 3131-3145 ◽  
Author(s):  
Ezequiel J. Tolosa ◽  
Maite G. Fernandez-Barrena ◽  
Eriko Iguchi ◽  
Angela L. McCleary-Wheeler ◽  
Ryan M. Carr ◽  
...  

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


2020 ◽  
Vol 6 (38) ◽  
pp. eaba8196
Author(s):  
José M. Dias ◽  
Zhanna Alekseenko ◽  
Ashwini Jeggari ◽  
Marcelo Boareto ◽  
Jannik Vollmer ◽  
...  

How time is measured by neural stem cells during temporal neurogenesis has remained unresolved. By combining experiments and computational modeling, we define a Shh/Gli-driven three-node timer underlying the sequential generation of motor neurons (MNs) and serotonergic neurons in the brainstem. The timer is founded on temporal decline of Gli-activator and Gli-repressor activities established through down-regulation of Gli transcription. The circuitry conforms an incoherent feed-forward loop, whereby Gli proteins not only promote expression of Phox2b and thereby MN-fate but also account for a delayed activation of a self-promoting transforming growth factor–β (Tgfβ) node triggering a fate switch by repressing Phox2b. Hysteresis and spatial averaging by diffusion of Tgfβ counteract noise and increase temporal accuracy at the population level, providing a functional rationale for the intrinsically programmed activation of extrinsic switch signals in temporal patterning. Our study defines how time is reliably encoded during the sequential specification of neurons.


Sign in / Sign up

Export Citation Format

Share Document