multipolar spindle
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 118 (28) ◽  
pp. e2026421118
Author(s):  
Tenghan Zhuang ◽  
Boyan Zhang ◽  
Yihong Song ◽  
Fan Huang ◽  
Wangfei Chi ◽  
...  

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.



2021 ◽  
Vol 134 (6) ◽  
Author(s):  
Tsuyoshi Shoda ◽  
Kanta Yamazoe ◽  
Yuri Tanaka ◽  
Yuki Asano ◽  
Yoshihiro H. Inoue

ABSTRACT After centrosome duplication, centrioles elongate before M phase. To identify genes required for this process and to understand the regulatory mechanism, we investigated the centrioles in Drosophila premeiotic spermatocytes expressing fluorescently tagged centriolar proteins. We demonstrated that an essential microtubule polymerisation factor, Orbit (the Drosophila CLASP orthologue, encoded by chb), accumulated at the distal end of centrioles and was required for the elongation. Conversely, a microtubule-severing factor, Klp10A, shortened the centrioles. Genetic analyses revealed that these two proteins functioned antagonistically to determine centriole length. Furthermore, Cp110 in the distal tip complex was closely associated with the factors involved in centriolar dynamics at the distal end. We observed loss of centriole integrity, including fragmentation of centrioles and earlier separation of the centriole pairs, in Cp110-null mutant cells either overexpressing Orbit or depleted of Klp10A. Excess centriole elongation in the absence of the distal tip complex resulted in the loss of centriole integrity, leading to the formation of multipolar spindle microtubules emanating from centriole fragments, even when they were unpaired. Our findings contribute to understanding the mechanism of centriole integrity, disruption of which leads to chromosome instability in cancer cells.



Mutagenesis ◽  
2021 ◽  
Author(s):  
Xihan Guo ◽  
Chunlei Wang ◽  
Weimeng Tian ◽  
Xueqin Dai ◽  
Juan Ni ◽  
...  

Abstract Bulbus of Fritillaria cirrhosa D. Don (BFC), an outstanding antitussive and expectorant herbal drug used in China and many other countries, has potential but less understood genotoxicity. Previously, we have reported that aqueous extract of BFC compromised the spindle assembly checkpoint and cytokinesis in NCM460 cells. Here, we found that one remarkable observation in BFC-treated NCM460 cells was multipolar mitosis, a trait classically compromises the fidelity of chromosome segregation. More detailed investigation revealed that BFC induced spindle multipolarity in metaphases and ana-telophases in a dose- and time-dependent manner, suggesting BFC-induced multipolar spindle conformation was not transient. The frequency of multipolar metaphase correlated well to that of multipolar ana-telophases, indicating that BFC-induced multipolar metaphases often persisted through anaphase. Unexpectedly, BFC blocked the proliferation of binucleated cells, suggesting spindle multipolarity was not downstream of BFC-induced cytokinesis failure. Exposure of BFC to early mitotic cells, rather than S/G2 cells, contributed greatly to spindle multipolarity, indicating BFC might disrupt centrosome integrity rather than induce centrosome overduplication. The immunofluorescence results showed that the centrosomes were severely fragmented by a short-term treatment of BFC and the extent of centrosome fragmentation in early mitotic cells was larger than this in S/G2 cells. Consistently, several genes (e.g., p53, Rb Centrin-2, Plk-4, Plk-1 and Aurora-A) involved in regulating centrosome integrity were significantly deregulated by BFC. Together, our results suggest that BFC causes multipolar spindles primarily by inducing centrosome fragmentation. Coupling these results to our previous observations, we recommend the risk/benefit ratio should be considered in practical use of BFC.



2019 ◽  
Vol 116 (47) ◽  
pp. 23691-23697 ◽  
Author(s):  
Sylvie Rodrigues-Ferreira ◽  
Anne Nehlig ◽  
Hadia Moindjie ◽  
Clarisse Monchecourt ◽  
Cynthia Seiler ◽  
...  

Predictive biomarkers for tumor response to neoadjuvant chemotherapy are needed in breast cancer. This study investigates the predictive value of 280 genes encoding proteins that regulate microtubule assembly and function. By analyzing 3 independent multicenter randomized cohorts of breast cancer patients, we identified 17 genes that are differentially regulated in tumors achieving pathological complete response (pCR) to neoadjuvant chemotherapy. We focused on the MTUS1 gene, whose major product, ATIP3, is a microtubule-associated protein down-regulated in aggressive breast tumors. We show here that low levels of ATIP3 are associated with an increased pCR rate, pointing to ATIP3 as a predictive biomarker of breast tumor chemosensitivity. Using preclinical models of patient-derived xenografts and 3-dimensional models of breast cancer cell lines, we show that low ATIP3 levels sensitize tumors to the effects of taxanes but not DNA-damaging agents. ATIP3 silencing improves the proapoptotic effects of paclitaxel and induces mitotic abnormalities, including centrosome amplification and multipolar spindle formation, which results in chromosome missegregation leading to aneuploidy. As shown by time-lapse video microscopy, ATIP3 depletion exacerbates cytokinesis failure and mitotic death induced by low doses of paclitaxel. Our results favor a mechanism by which the combination of ATIP3 deficiency and paclitaxel treatment induces excessive aneuploidy, which in turn results in elevated cell death. Together, these studies highlight ATIP3 as an important regulator of mitotic integrity and a useful predictive biomarker for a population of chemoresistant breast cancer patients.



2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lia Mara Gomes Paim ◽  
Greg FitzHarris

Abstract Tetraploidisation is considered a common event in the evolution of chromosomal instability (CIN) in cancer cells. The current model for how tetraploidy drives CIN in mammalian cells is that a doubling of the number of centrioles that accompany the genome doubling event leads to multipolar spindle formation and chromosome segregation errors. By exploiting the unusual scenario of mouse blastomeres, which lack centrioles until the ~64-cell stage, we show that tetraploidy can drive CIN by an entirely distinct mechanism. Tetraploid blastomeres assemble bipolar spindles dictated by microtubule organising centres, and multipolar spindles are rare. Rather, kinetochore-microtubule turnover is altered, leading to microtubule attachment defects and anaphase chromosome segregation errors. The resulting blastomeres become chromosomally unstable and exhibit a dramatic increase in whole chromosome aneuploidies. Our results thus reveal an unexpected mechanism by which tetraploidy drives CIN, in which the acquisition of chromosomally-unstable microtubule dynamics contributes to chromosome segregation errors following tetraploidisation.



Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1612 ◽  
Author(s):  
Andrea Weiss ◽  
Morgan Le Roux-Bourdieu ◽  
Marloes Zoetemelk ◽  
George M. Ramzy ◽  
Magdalena Rausch ◽  
...  

A major limitation of clinically used cancer drugs is the lack of specificity resulting in toxicity. To address this, we performed a phenotypically-driven screen to identify optimal multidrug combinations acting with high efficacy and selectivity in clear cell renal cell carcinoma (ccRCC). The search was performed using the Therapeutically Guided Multidrug Optimization (TGMO) method in ccRCC cells (786-O) and nonmalignant renal cells and identified a synergistic low-dose four-drug combination (C2) with high efficacy and negligible toxicity. We discovered that C2 inhibits multipolar spindle pole clustering, a survival mechanism employed by cancer cells with spindle abnormalities. This phenotype was also observed in 786-O cells resistant to sunitinib, the first line ccRCC treatment, as well as in melanoma cells with distinct percentages of supernumerary centrosomes. We conclude that C2-treatment shows a high efficacy in cells prone to form multipolar spindles. Our data suggest a highly effective and selective C2 treatment strategy for malignant and drug-resistant cancers.



2019 ◽  
Vol 116 (32) ◽  
pp. 15967-15972 ◽  
Author(s):  
Zhihui Xue ◽  
Changzhen Liu ◽  
Wenqing Shi ◽  
Yongjie Miao ◽  
Yi Shen ◽  
...  

The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1. In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB. Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.



2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yeon-Kyeong Lee ◽  
Ki Won Lee ◽  
Minju Kim ◽  
Yerin Lee ◽  
Jiyun Yoo ◽  
...  

Chelidonium majus L. (family Papaveraceae), commonly known as greater celandine or tetterwort, has been reported to have antibacterial and anticancer effects and chelidonine is known as a functional metabolite extracted from C. majus. In this study, we observed the cytotoxicity of the alkaloid, chelidonine, and investigated its functional mechanism in T98G glioblastoma cell line. Chelidonine induced apoptosis in a dose-dependent manner, which was accompanied by decreased antiapoptotic protein Mcl-1. Caspase-3 and -9 were activated by treatment with chelidonine, but chelidonine-mediated apoptosis was only partially inhibited by a pan-caspase inhibitor. Chelidonine also induced the translocation of AIF into the nucleus; therefore, it is likely that chelidonine induces T98G cell death through both caspase-dependent and caspase-independent apoptosis pathways. Chelidonine also induced G2/M arrest by inducing multipolar spindle assembly, which might also lead to cell death through inhibiting mitosis. Active CDK1, one of factors contributing to the prolongation of G2/M phase, induced Mcl-1 degradation increasing mitochondrial instability, which is also an inducer of apoptosis in chelidonine-treated T98G cells. Taken together, these findings indicate that chelidonine induces apoptosis through G2/M arrest and Mcl-1 degradation, implying that it may represent a compound for anticancer chemotherapy.



2019 ◽  
Author(s):  
Noelle V. Antao ◽  
Marina Marcet-Ortega ◽  
Paolo Cifani ◽  
Alex Kentsis ◽  
Emily A. Foley

AbstractA single incidence of whole-genome doubling (WGD) is common early in tumorigenesis. In addition to increasing ploidy, WGD doubles centrosome number. In the ensuing mitoses, excess centrosomes form a multipolar spindle, resulting in a lethal multipolar cell division. To survive, cells must cluster centrosomes into two poles to allow a bipolar cell division. Cancer cells are typically more proficient at centrosome clustering than untransformed cells, but the mechanism behind increased clustering ability is not well understood. Heterozygous missense mutations in PPP2R1A, which encodes the alpha isoform of the A-subunit of protein phosphatase 2A (PP2A-Aα), positively correlate with WGD. To understand this correlation, we introduced a heterozygous hotspot mutation, P179R, in endogenous PP2A-Aα in human tissue culture cells. We find that PP2A-AαP179R decreases PP2A assembly and targeting. Strikingly, when centrosome number is increased, either through cytokinesis failure or centrosome amplification, PP2A-Aα mutant cells are more proficient than WT cells at centrosome clustering, likely due to PP2A-Aα loss-of-function. PP2A-AαP179R appears to enhance centrosome clustering by altering the interactions between centrosomes and the cell cortex. Thus, cancer-associated mutations in PP2A-Aα may increase cellular fitness after WGD by enhancing centrosome clustering.



2018 ◽  
Vol 62 (6) ◽  
pp. 793-801 ◽  
Author(s):  
Ramya Varadarajan ◽  
Nasser M. Rusan

Throughout biology, specifying cellular events at the correct location and time is necessary for ensuring proper function. The formation of robust microtubule organizing centers (MTOCs) in mitosis is one such event that must be restricted in space to centrosomes to prevent ectopic MTOC formation elsewhere in the cell, a situation that can result in multipolar spindle formation and aneuploidy. The process of reaching maximum centrosome MTOC activity in late G2, known as centrosome maturation, ensures accurate timing of nuclear envelope breakdown and proper chromosome attachment. Although centrosome maturation has been recognized for over a century, the spatial and temporal regulatory mechanisms that direct MTOC activation are poorly understood. Here, we review Sas-4/CPAP, Asterless/Cep152, Spd-2/Cep192, and PLP/Pericentrin, a group of proteins we refer to as ‘bridge’ proteins that reside at the surface of centrioles, perfectly positioned to serve as the gatekeepers of proper centrosome maturation at the perfect place and time.



Sign in / Sign up

Export Citation Format

Share Document