scholarly journals Sufu negatively regulates both initiations of centrosome duplication and DNA replication

2021 ◽  
Vol 118 (28) ◽  
pp. e2026421118
Author(s):  
Tenghan Zhuang ◽  
Boyan Zhang ◽  
Yihong Song ◽  
Fan Huang ◽  
Wangfei Chi ◽  
...  

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.

2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Ziyu Zhang ◽  
Longyan Shen ◽  
Kelvin Law ◽  
Zengdi Zhang ◽  
Xiaotong Liu ◽  
...  

ABSTRACT Cellular responses to the graded Sonic Hedgehog (Shh) morphogenic signal are orchestrated by three Gli genes that give rise to both transcription activators and repressors. An essential downstream regulator of the pathway, encoded by the tumor suppressor gene Suppressor of fused (Sufu), plays critical roles in the production, trafficking, and function of Gli proteins, but the mechanism remains controversial. Here, we show that Sufu is upregulated in active Shh responding tissues and accompanies Gli activators translocating into and Gli repressors out of the nucleus. Trafficking of Sufu to the primary cilium, potentiated by Gli activators but not repressors, was found to be coupled to its nuclear import. We have identified a nuclear export signal (NES) motif of Sufu in juxtaposition to the protein kinase A (PKA) and glycogen synthase kinase 3 (GSK3) dual phosphorylation sites and show that Sufu binds the chromatin with both Gli1 and Gli3. Close comparison of neural tube development among individual Ptch1−/−, Sufu−/−, and Ptch1−/−; Sufu−/− double mutant embryos indicates that Sufu is critical for the maximal activation of Shh signaling essential to the specification of the most-ventral neurons. These data define Sufu as a novel class of molecular chaperone required for every aspect of Gli regulation and function.


2017 ◽  
Author(s):  
Jeffrey C. Medley ◽  
Lauren E. DeMeyer ◽  
Megan M. Kabara ◽  
Mi Hye Song

ABSTRACTAs the primary microtubule-organizing center, centrosomes play a key role in establishing mitotic bipolar spindles that secure correct transmission of genomic content. For the fidelity of cell division, centrosome number must be strictly controlled by duplicating only once per cell cycle. Proper levels of centrosome proteins are shown to be critical for normal centrosome number and function. Overexpressing core centrosome factors leads to extra centrosomes, while depleting these factors results in centrosome duplication failure. In this regard, protein turnover by the ubiquitin-proteasome system provides a vital mechanism for the regulation of centrosome protein levels. Here, we report that FZR-1, the Caenorhabditis elegans homolog of Cdh1/Hct1/Fzr, a co-activator of the anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase, functions as a negative regulator of centrosome duplication in the Caenorhabditis elegans embryo. During mitotic cell division in the early embryo, FZR-1 is associated with centrosomes and enriched at nuclei. Loss of fzr-1 function restores centrosome duplication and embryonic viability to the hypomorphic zyg-1(it25) mutant, in part, through elevated levels of SAS-5 at centrosomes. Our data suggest that the APC/CFZR-1 regulates SAS-5 levels by directly recognizing the conserved KEN-box motif, contributing to proper centrosome duplication. Together, our work shows that FZR-1 plays a conserved role in regulating centrosome duplication in Caenorhabditis elegans.


Author(s):  
Yiping Hu ◽  
Juan He ◽  
Lianhua He ◽  
Bihua Xu ◽  
Qingwen Wang

AbstractTransforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.


1997 ◽  
Vol 110 (6) ◽  
pp. 753-763 ◽  
Author(s):  
C.S. Detweiler ◽  
J.J. Li

CDC6 is essential for the initiation of DNA replication in the budding yeast Saccharomyces cerevisiae. Here we examine the timing of Cdc6p expression and function during the cell cycle. Cdc6p is expressed primarily between mitosis and Start. This pattern of expression is due in part to posttranscriptional controls, since it is maintained when CDC6 is driven by a constitutively induced promoter. Transcriptional repression of CDC6 or exposure of cdc6-1(ts) cells to the restrictive temperature at mitosis blocks subsequent S phase, demonstrating that the activity of newly synthesized Cdc6p is required each cell cycle for DNA replication. In contrast, similar perturbations imposed on cells arrested in G(1) before Start have moderate or no effects on DNA replication. This suggests that, between mitosis and Start, Cdc6p functions in an early step of initiation, effectively making cells competent for replication. Prolonged exposure of cdc6-1(ts) cells to the restrictive temperature at the pre-Start arrest eventually does cripple S phase, indicating that Cdc6p also functions to maintain this initiation competence during G(1). The requirement for Cdc6p to establish and maintain initiation competence tightly correlates with the requirement for Cdc6p to establish and maintain the pre-replicative complex at a replication origin, strongly suggesting that the pre-replicative complex is an important intermediate for the initiation of DNA replication. Confining assembly of the complex to G(1) by restricting expression of Cdc6p to this period may be one way of ensuring precisely one round of replication per cell cycle.


2002 ◽  
Vol 13 (2) ◽  
pp. 607-620 ◽  
Author(s):  
Gina Schwed ◽  
Noah May ◽  
Yana Pechersky ◽  
Brian R. Calvi

Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes duringDrosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.


2021 ◽  
Author(s):  
Caitlin Connolly ◽  
Saori Takahashi ◽  
Hisashi Miura ◽  
Ichiro Hiratani ◽  
Nick Gilbert ◽  
...  

The organisation of chromatin is closely intertwined with biological activities of chromosome domains, including transcription and DNA replication status. Scaffold attachment factor A (SAF-A), also known as Heteronuclear Ribonucleoprotein Protein U (HNRNPU), contributes to the formation of open chromatin structure. Here we demonstrate that SAF-A promotes the normal progression of DNA replication, and enables resumption of replication after inhibition. We report that cells depleted for SAF-A show reduced origin licensing in G1 phase, and consequently reduced origin activation frequency in S phase. Replication forks progress slowly in cells depleted for SAF-A, also contributing to reduced DNA synthesis rate. Single-cell replication timing analysis revealed that the boundaries between early- and late- replicating domains are blurred in cells depleted for SAF-A. Associated with these defects, SAF-A-depleted cells show elevated gH2A phosphorylation and tend to enter quiescence. Overall we find that SAF-A protein promotes robust DNA replication to ensure continuing cell proliferation.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Robin Armstrong ◽  
Taylor Penke ◽  
Samuel Chao ◽  
Gabrielle Gentile ◽  
Brian Strahl ◽  
...  

Chromatin structure and its organization contributes to the proper regulation and timing of DNA replication. Yet, the precise mechanism by which chromatin contributes to DNA replication remains incompletely understood. This is particularly true for cell types that rely on polyploidization as a developmental strategy for growth and high biosynthetic capacity. During Drosophila larval development, cells of the salivary gland undergo endoreplication, repetitive rounds of DNA synthesis without intervening cell division, resulting in ploidy values of ~1350C. S phase of these endocycles displays a reproducible pattern of early and late replicating regions of the genome resulting from the activity of the same replication initiation factors that are used in diploid cells. However, unlike diploid cells, the latest replicating regions of polyploid salivary gland genomes, composed primarily of pericentric heterochromatic enriched in H3K9 methylation, are not replicated each endocycle, resulting in under-replicated domains with reduced ploidy. Here, we employ a histone gene replacement strategy in Drosophila to demonstrate that mutation of a histone residue important for heterochromatin organization and function (H3K9) but not mutation of a histone residue important for euchromatin function (H4K16), disrupts proper endoreplication in Drosophila salivary gland polyploid genomes thereby leading to DNA copy gain in pericentric heterochromatin. These findings reveal that H3K9 is necessary for normal levels of under-replication of pericentric heterochromatin and suggest that under-replication at pericentric heterochromatin is mediated through H3K9 methylation.


Sign in / Sign up

Export Citation Format

Share Document