Experiments on chromosome elimination in the gall midge, Mayetiola destructor

Development ◽  
1970 ◽  
Vol 24 (2) ◽  
pp. 257-286
Author(s):  
C. R. Bantock

Cleavage in Cecidomyidae (Diptera) is characterized by the elimination of chromosomes from presumptive somatic nuclei. The full chromosome complement is kept by the germ-line nuclei. The course of cleavage in Mayetiola destructor (Say) is described. After the fourth division two nuclei lie in the posterior polar-plasm and become associated with polar granules, and fourteen nuclei lie in the rest of the cytoplasm. All the nuclei possess about forty chromosomes. During the fifth division the posterior nuclei do not divide and the polar-plasm becomes constricted to form primordial germ cells (pole cells). The remaining fourteen nuclei divide and lose about thirty-two chromosomes so that twenty-eight nuclei are formed containing only eight chromosomes. These are the presumptive somatic nuclei. During subsequent divisions the pole cell nuclei retain the full chromosome number; these divisions occur less frequently than those of the somatic nuclei. Experiments were performed on early embryonic stages to elucidate the properties of the posterior end during the time that chromosome elimination was taking place from the presumptive somatic nuclei. Ultraviolet irradiation, constriction, and centrifugation techniques were used. The polar granules are concerned with the non-division of the germ-cell nuclei during the fifth division, since if the granules are dispersed by centrifugation, or if nuclei are prevented by constriction from coming into contact with them before the fifth division, all the nuclei divide with chromosome elimination at this division. With each technique it is possible to obtain embryos possessing germ cells with only eight chromosomes in their nuclei. Individuals possessing germ-line nuclei with only eight chromosomes were allowed to develop to maturity. Abnormalities were confined to the germ cells only and were the same regardless of which technique had been used to produce the deficient germ line. An ovary containing germ-cell nuclei with only eight chromosomes is unable to form both oocytes and nurse cells. A testis containing germ-cell nuclei with only eight chromosomes is unable to form spermatocytes but cells which come to resemble gametes are formed. Experimental males and females are both sterile. The results are discussed in relation to other experimental work on Cecidomyidae and the following main conclusions are reached: (a) the polar granules are responsible for preventing an irreversible loss of chromosomes from the germ-cell nuclei by preventing the mitosis of these nuclei during the fifth division; (b) the chromosomes normally retained in the germ line are required for gametogenesis, particularly for oogenesis. The significance of chromosome elimination is discussed.

Author(s):  
Peter H Vogt ◽  
Jutta Zimmer ◽  
Ulrike Bender ◽  
Thomas Strowitzki

The Ubiquitous Transcribed Y (UTY) AZFa candidate gene on the human Y chromosome and its paralog on the X chromosome, UTX, encode a histone lysine demethylase removing chromatin H3K27 methylation marks at genes transcriptional start sites for activation. Both proteins harbour the conserved Jumonji C (JmjC) domain, functional in chromatin metabolism, and an extended N-terminal tetratrico peptide repeat (TPR) block involved in specific protein-interactions. Specific antisera for human UTY and UTX proteins were developed to distinguish expression of both proteins in human germ cells by immunohistochemical experiments on appropriate tissue sections. In the male germ line, UTY was expressed in the fraction of A spermatogonia located at the basal membrane probably including spermatogonia stem cells. UTX expression was more spread in all spermatogonia and in early spermatids. In female germ line, UTX expression was found in the primordial germ cells of the ovary. UTY was also expressed during fetal male germ cell development, whereas UTX expression was visible only at distinct gestation weeks. Based on these results and the conserved neighboured location of UTY and DDX3Y in Yq11 found in mammals of distinct lineages, we conclude that UTY –like DDX3Y- is part of the Azoospermia factor a (AZFa) locus functioning in human spermatogonia to support the balance of their proliferation-differentiation rate before meiosis. Comparable UTY and DDX3Y expression was also found in gonadoblastoma and dysgerminoma cells found in germ cell nests of the dysgenetic gonads of individuals with disorders of sexual development and a Y chromosome in karyotype (DSD-XY). This confirms that AZFa overlaps with GBY, the Gonadoblastoma susceptibility Y locus, and includes the UTY gene.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1823-1832 ◽  
Author(s):  
Y. Kato ◽  
W.M. Rideout ◽  
K. Hilton ◽  
S.C. Barton ◽  
Y. Tsunoda ◽  
...  

There are distinctive and characteristic genomic modifications in primordial germ cells that distinguish the germ cell lineage from somatic cells. These modifications include, genome-wide demethylation, erasure of allele-specific methylation associated with imprinted genes, and the re-activation of the X chromosome. The allele-specific differential methylation is involved in regulating the monoallelic expression, and thus the gene dosage, of imprinted genes, which underlies functional differences between parental genomes. However, when the imprints are erased in the germ line, the parental genomes acquire an equivalent epigenetic and functional state. Therefore, one of the reasons why primordial germ cells are unique is because this is the only time in mammals when the distinction between parental genomes ceases to exist. To test how the potentially imprint-free primordial germ cell nuclei affect embryonic development, we transplanted them into enucleated oocytes. Here we show that the reconstituted oocyte developed to day 9.5 of gestation, consistently as a small embryo and a characteristic abnormal placenta. The embryo proper also did not progress much further even when the inner cell mass was ‘rescued’ from the abnormal placenta by transfer into a tetraploid host blastocyst. We found that development of the experimental conceptus was affected, at least in part, by a lack of gametic imprints, as judged by DNA methylation and expression analysis of several imprinted genes. The evidence suggests that gametic imprints are essential for normal development, and that they can neither be initiated nor erased in mature oocytes; these properties are unique to the developing germ line.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 207-219 ◽  
Author(s):  
A. Bardsley ◽  
K. McDonald ◽  
R.E. Boswell

Mutations in the tudor locus of Drosophila affect two distinct determinative processes in embryogenesis; segmentation of the abdomen and determination of the primordial germ cells. The distribution of tudor protein during embryogenesis, and the effect of various mutations on its distribution, suggest that tudor protein may carry out these functions separately, based on its location in the embryo. The protein is concentrated in the posterior pole cytoplasm (germ plasm), where it is found in polar granules and mitochondria. Throughout the rest of the embryo, tudor protein is associated with the cleavage nuclei. Mutations in all maternal genes known to be required for the normal functioning of the germ plasm eliminate the posterior localization of tudor protein, whereas mutations in genes required for the functioning of the abdominal determinant disrupt the localization around nuclei. Analysis of embryos of different maternal genotypes indicates that the average number of pole cells formed is correlated with the amount of tudor protein that accumulates in the germ plasm. Our results suggest that tudor protein localized in the germ plasm is instrumental in germ cell determination, whereas nuclear-associated tudor protein is involved in determination of segmental pattern in the abdomen.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3157-3165 ◽  
Author(s):  
C. Yoon ◽  
K. Kawakami ◽  
N. Hopkins

Identification and manipulation of the germ line are important to the study of model organisms. Although zebrafish has recently emerged as a model for vertebrate development, the primordial germ cells (PGCs) in this organism have not been previously described. To identify a molecular marker for the zebrafish PGCs, we cloned the zebrafish homologue of the Drosophila vasa gene, which, in the fly, encodes a germ-cell-specific protein. Northern blotting revealed that zebrafish vasa homologue (vas) transcript is present in embryos just after fertilization, and hence it is probably maternally supplied. Using whole-mount in situ hybridization, we investigated the expression pattern of vas RNA in zebrafish embryos from the 1-cell stage to 10 days of development. Here we present evidence that vas RNA is a germ-cell-specific marker, allowing a description of the zebrafish PGCs for the first time. Furthermore, vas transcript was detected in a novel pattern, localized to the cleavage planes in 2- and 4-cell-stage embryos. During subsequent cleavages, the RNA is segregated as subcellular clumps to a small number of cells that may be the future germ cells. These results suggest new ways in which one might develop techniques for the genetic manipulation of zebrafish. Furthermore, they provide the basis for further studies on this novel RNA localization pattern and on germ-line development in general.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


Author(s):  
Arend W. Overeem ◽  
Yolanda W. Chang ◽  
Jeroen Spruit ◽  
Celine M. Roelse ◽  
Susana M. Chuva De Sousa Lopes

The human germ cell lineage originates from primordial germ cells (PGCs), which are specified at approximately the third week of development. Our understanding of the signaling pathways that control this event has significantly increased in recent years and that has enabled the generation of PGC-like cells (PGCLCs) from pluripotent stem cells in vitro. However, the signaling pathways that drive the transition of PGCs into gonia (prospermatogonia in males or premeiotic oogonia in females) remain unclear, and we are presently unable to mimic this step in vitro in the absence of gonadal tissue. Therefore, we have analyzed single-cell transcriptomics data of human fetal gonads to map the molecular interactions during the sex-specific transition from PGCs to gonia. The CellPhoneDB algorithm was used to identify significant ligand–receptor interactions between germ cells and their sex-specific neighboring gonadal somatic cells, focusing on four major signaling pathways WNT, NOTCH, TGFβ/BMP, and receptor tyrosine kinases (RTK). Subsequently, the expression and intracellular localization of key effectors for these pathways were validated in human fetal gonads by immunostaining. This approach provided a systematic analysis of the signaling environment in developing human gonads and revealed sex-specific signaling pathways during human premeiotic germ cell development. This work serves as a foundation to understand the transition from PGCs to premeiotic oogonia or prospermatogonia and identifies sex-specific signaling pathways that are of interest in the step-by-step reconstitution of human gametogenesis in vitro.


2018 ◽  
Author(s):  
Kathryn E. Kistler ◽  
Tatjana Trcek ◽  
Thomas R. Hurd ◽  
Ruoyu Chen ◽  
Feng-Xia Liang ◽  
...  

ABSTRACTGerm granules are non-membranous ribonucleoprotein granules deemed the hubs for post-transcriptional gene regulation and functionally linked to germ cell fate across species. Little is known about the physical properties of germ granules and how these relate to germ cell function. Here we study two types of germ granules in the Drosophila embryo: cytoplasmic germ granules that instruct primordial germ cells (PGCs) formation and nuclear germ granules within early PGCs with unknown function. We show that cytoplasmic and nuclear germ granules are phase transitioned condensates nucleated by Oskar protein that display liquid as well as hydrogel-like properties. Focusing on nuclear granules, we find that Oskar drives their formation in heterologous cell systems. Multiple, independent Oskar protein domains synergize to promote granule phase separation. Deletion of Oskar’s nuclear localization sequence specifically ablates nuclear granules in cell systems. In the embryo, nuclear germ granules promote germ cell divisions thereby increasing PGC number for the next generation.


2008 ◽  
Vol 78 (Suppl_1) ◽  
pp. 64-64
Author(s):  
Jillian Guttormsen ◽  
Gerrit J. Bouma ◽  
Frances Bhushan ◽  
Trevor Williams ◽  
Quinton A. Winger

Sign in / Sign up

Export Citation Format

Share Document