Interdigital cell death during limb development of the turtle and lizard with an interpretation of evolutionary significance

Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 285-289
Author(s):  
John F. Fallon ◽  
Jo Ann Cameron

Cell death accompanies the formation of free digits in birds and mammals. However, in species with webbing between the adult digits, little or no cell death occurs in the prospectively webbed region of the developing interdigit. Cell death does not occur during the formation of free digits in amphibians. In this paper we report that cell death accompanies the formation of the digits in snapping and painted turtles and in the skink (a lizard). We conclude that cell death accompanying the formation of free digits had its origin at the point of amniote emergence during evolution.

Development ◽  
1974 ◽  
Vol 31 (3) ◽  
pp. 747-760
Author(s):  
J. R. Hinchliffe ◽  
P. V. Thorogood

Vital staining reveals that in homozygous (ta3/ta3) talpid3 embryos, the areas of mesenchymal cell death which occur regularly in normal limb development are absent or reduced. The necrotic locus in the central mesenchyme (the ‘opaque patch’) which in the normal chick limb reaches maximum development at stages 24 and 25 (4½–5 days) is absent or much reduced in talpid3 fore- and hindlimb-buds. Autoradiographic studies, following application of a 2 h pulse of 40 μCi of 35SO4 to the vitelline circulation, show that normal tibia and fibula incorporate 35SO4 into chondroitin sulphate at stage 24 and more strongly at stage 26 during the process of chondrogenesis. The mesenchyme in the opaque patch region of normal limbs ceases to incorporate 35SO4 into chondroitin sulphate at stage 24. Talpid3 mesenchyme cells in the equivalent position at stages 24 and 26 continue to incorporate 35SO4, remain viable and become chondrogenic. It is suggested that absence or reduction of this central necrotic locus in talpid3 is causally related to the fusion of radius/ulna and (in some cases) of tibia/fibula characteristic of the later stages (28–35) of talpid3 limb development. This evidence supports the hypothesis that cell death in the opaque patch plays a morphogenetic role in separation of radius/ulna and tibia/fibula. The digital plate of stage 32 (7½ days) normal limbs is characterized by massive necrosis of the interdigital tissue. In talpid3 forelimbs of stages 30–35 interdigital necrosis is absent, and there is no regression of the tissue between the digits (‘soft tissue syndactyly’). In talpid3 hindlimbs of stage 30–35 interdigital necrosis is either absent or much reduced, and there is little or no erosion of the soft tissue between the digits. This evidence supports the hypothesis that the morphogenetic role of interdigital cell death is in causing separation of the digits through shaping and remodelling the contours of the digital plate.


Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 231-244
Author(s):  
J. M. Hurle ◽  
Y. Gañan

In the present work, we have analysed the possible involvement of ectodermal tissue in the control of interdigital mesenchymal cell death. Two types of experiments were performed in the stages previous to the onset of interdigital cell death: (i) removal of the AER of the interdigit; (ii) removal of the dorsal ectoderm of the interdigit. After the operation embryos were sacrificed at 10–12h intervals and the leg buds were studied by whole-mount cartilage staining, vital staining with neutral red and scanning electron microscopy. Between stages 27 and 30, ridge removal caused a local inhibition of the growth of the interdigit. In a high percentage of the cases, ridge removal at these stages was followed 30–40 h later by the formation of ectopic nodules of cartilage in the interdigit. The incidence of ectopic cartilage formation was maximum at stage 29 (60%). In all cases, cell death took place on schedule although the intensity and extent of necrosis appeared diminished in relation to the intensity of inhibition of interdigital growth and to the presence of interdigital cartilages. Ridge removal at stage 31 did not cause inhibition of the growth of the interdigit and ectopic chondrogenesis was only detected in 3 out of 35 operated embryos. Dorsal ectoderm removal from the proximal zone of the interdigit at stage 29 caused the chondrogenesis of the proximal interdigital mesenchyme in 6 out of 18 operated embryos. The pattern of neutral red vital staining was consistent with these results revealing a partial inhibition of interdigital cell death in the proximal zone of the interdigit. It is proposed that under the present experimental conditions the mesenchymal cells are diverted from the death programme by a primary transformation into cartilage.


2012 ◽  
Vol 129 (1-4) ◽  
pp. 38-50 ◽  
Author(s):  
Ryo Aizawa ◽  
Atsushi Yamada ◽  
Dai Suzuki ◽  
Tadahiro Iimura ◽  
Hidetoshi Kassai ◽  
...  

Development ◽  
2000 ◽  
Vol 127 (22) ◽  
pp. 4811-4823 ◽  
Author(s):  
J.J. Sanz-Ezquerro ◽  
C. Tickle

The polarising region expresses the signalling molecule sonic hedgehog (Shh), and is an embryonic signalling centre essential for outgrowth and patterning of the vertebrate limb. Previous work has suggested that there is a buffering mechanism that regulates polarising activity. Little is known about how the number of Shh-expressing cells is controlled but, paradoxically, the polarising region appears to overlap with the posterior necrotic zone, a region of programmed cell death. We have investigated how Shh expression and cell death respond when levels of polarising activity are altered, and show an autoregulatory effect of Shh on Shh expression and that Shh affects cell death in the posterior necrotic zone. When we increased Shh signalling, by grafting polarising region cells or applying Shh protein beads, this led to a reduction in the endogenous Shh domain and an increase in posterior cell death. In contrast, cells in other necrotic regions of the limb bud, including the interdigital areas, were rescued from death by Shh protein. Application of Shh protein to late limb buds also caused alterations in digit morphogenesis. When we reduced the number of Shh-expressing cells in the polarising region by surgery or drug-induced killing, this led to an expansion of the Shh domain and a decrease in the number of dead cells. Furthermore, direct prevention of cell death using a retroviral vector expressing Bcl2 led to an increase in Shh expression. Finally, we provide evidence that the fate of some of the Shh-expressing cells in the polarising region is to undergo apoptosis and contribute to the posterior necrotic zone during normal limb development. Taken together, these results show that there is a buffering system that regulates the number of Shh-expressing cells and thus polarising activity during limb development. They also suggest that cell death induced by Shh could be the cellular mechanism involved. Such an autoregulatory process based on cell death could represent a general way for regulating patterning signals in embryos.


1993 ◽  
Vol 106 (1) ◽  
pp. 201-208 ◽  
Author(s):  
V. Garcia-Martinez ◽  
D. Macias ◽  
Y. Ganan ◽  
J.M. Garcia-Lobo ◽  
M.V. Francia ◽  
...  

In this work we have attempted to characterize the programmed cell death process in the chick embryonic interdigital tissue. Interdigital cell death is a prominent phenomenon during limb development and has the role of sculpturing the digits. Morphological changes in the regressing interdigital tissue studied by light, transmission and scanning electron microscopy were correlated with the occurrence of internucleosomal DNA fragmentation, evaluated using agarose gels. Programming of the cell death process was also analyzed by testing the chondrogenic potential of the interdigital mesenchyme, in high density cultures. Our results reveal a progressive loss of the chondrogenic potential of the interdigital mesenchyme, detectable 36 hours before the onset of the degenerative process. Internucleosomal DNA fragmentation was only detected concomitant with the appearance of cells dying with the morphology of apoptosis, but unspecific DNA fragmentation was also present at the same time. This unspecific DNA fragmentation was explained by a precocious activation of the phagocytic removal of the dying cells, confirmed in the tissue sections. From our observations it is suggested that programming of cell death involves changes before endonuclease activation. Further, cell surface changes involved in the phagocytic uptake of the dying cells appear to be as precocious as endonuclease activation.


2018 ◽  
Vol 179 (4) ◽  
pp. 257-274 ◽  
Author(s):  
Rocío Hernández-Cruz ◽  
Fátima Barrón-Pacheco ◽  
Daniel Sánchez ◽  
Salvador Arias ◽  
Sonia Vázquez-Santana

1999 ◽  
Vol 887 (1) ◽  
pp. 120-132 ◽  
Author(s):  
RAMÓN MERINO ◽  
YOLANDA GAÑÁN ◽  
DOMINGO MACIAS ◽  
JOAQUÍN RODRÍGUEZ-LEÓN ◽  
JUAN M. HURLE

Sign in / Sign up

Export Citation Format

Share Document