cell death process
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 36)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Aviva M. Tolkovsky ◽  
Maria Grazia Spillantini

Abstract How neurons die in neurodegenerative diseases is still unknown. The distinction between apoptosis as a genetically controlled mechanism, and necrosis, which was viewed as an unregulated process, has blurred with the ever-increasing number of necrotic-like death subroutines underpinned by genetically defined pathways. It is therefore pertinent to ask whether any of them apply to neuronal cell death in tauopathies. Although Alzheimer’s disease (AD) is the most prevalent tauopathy, tauopathies comprise an array of over 30 diseases in which the cytoplasmic protein tau aggregates in neurons, and also, in some diseases, in glia. Animal models have sought to distil the contribution of tau aggregation to the cell death process but despite intensive research, no one mechanism of cell death has been unequivocally defined. The process of tau aggregation, and the fibrillar structures that form, touch on so many cellular functions that there is unlikely to be a simple linear pathway of death; as one is blocked another is likely to take the lead. It is timely to ask how far we have advanced into defining whether any of the molecular players in the new death subroutines participate in the death process. Here we briefly review the currently known cell death routines and explore what is known about their participation in tau aggregation-related cell death. We highlight the involvement of cell autonomous and the more recent non-cell autonomous pathways that may enhance tau-aggregate toxicity, and discuss recent findings that implicate microglial phagocytosis of live neurons with tau aggregates as a mechanism of death.


2021 ◽  
Vol 7 (11) ◽  
pp. 971
Author(s):  
João Carlos Canossa Ferreira ◽  
Carla Lopes ◽  
Ana Preto ◽  
Maria Sameiro Torres Gonçalves ◽  
Maria João Sousa

Phenoxazine derivatives such as Nile Blue analogues are assumed to be increasingly relevant in cell biology due to their fluorescence staining capabilities and antifungal and anticancer activities. However, the mechanisms underlying their effects remain poorly elucidated. Using S. cerevisiae as a eukaryotic model, we found that BaP1, a novel 5- and 9-N-substituted benzo[a]phenoxazine synthesized in our laboratory, when used in low concentrations, accumulates and stains the vacuolar membrane and the endoplasmic reticulum. In contrast, at higher concentrations, BaP1 stains lipid droplets and induces a regulated cell death process mediated by vacuolar membrane permeabilization. BaP1 also induced mitochondrial fragmentation and depolarization but did not lead to ROS accumulation, changes in intracellular Ca2+, or loss of plasma membrane integrity. Additionally, our results show that the cell death process is dependent on the vacuolar protease Pep4p and that the vacuole permeabilization results in its translocation from the vacuole to the cytosol. In addition, although nucleic acids are commonly described as targets of benzo[a]phenoxazines, we did not find any alterations at the DNA level. Our observations highlight BaP1 as a promising molecule for pharmacological application, using vacuole membrane permeabilization as a targeted approach.


2021 ◽  
Author(s):  
Tomomi Kuwana ◽  
Yulia Kushnareva ◽  
Vivian Moraes ◽  
Bjoern Peters ◽  
Julian Suess ◽  
...  

In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases a subpopulation of the treated cells can exhibit a sublethal response, termed minority MOMP. In this phenomenon, the affected cells survive, despite a low level of caspase activation and a subsequent limited activation of the endonuclease CAD (DFFB). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. To discover genes affecting MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells. Among these were genes related to mitochondrial dynamics and mitophagy, which participate in the mitochondrial quality control (MQC) system. To test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5579
Author(s):  
Laura Martínez-Escardó ◽  
Montse Alemany ◽  
María Sánchez-Osuna ◽  
Alejandro Sánchez-Chardi ◽  
Meritxell Roig-Martínez ◽  
...  

Glioblastoma (GBM) is a highly aggressive brain tumor and almost all patients die because of relapses. GBM-derived cells undergo cell death without nuclear fragmentation upon treatment with different apoptotic agents. Nuclear dismantling determines the point-of-no-return in the apoptotic process. DFF40/CAD is the main endonuclease implicated in apoptotic nuclear disassembly. To be properly activated, DFF40/CAD should reside in the cytosol. However, the endonuclease is poorly expressed in the cytosol and remains cumulated in the nucleus of GBM cells. Here, by employing commercial and non-commercial patient-derived GBM cells, we demonstrate that the natural terpenoid aldehyde gossypol prompts DFF40/CAD-dependent nuclear fragmentation. A comparative analysis between gossypol- and staurosporine-treated cells evidenced that levels of neither caspase activation nor DNA damage were correlated with the ability of each compound to induce nuclear fragmentation. Deconvoluted confocal images revealed that DFF40/CAD was almost completely excluded from the nucleus early after the staurosporine challenge. However, gossypol-treated cells maintained DFF40/CAD in the nucleus for longer times, shaping a ribbon-like structure piercing the nuclear fragments and building a network of bridged masses of compacted chromatin. Therefore, GBM cells can fragment their nuclei if treated with the adequate insult, making the cell death process irreversible.


Author(s):  
Jingyu Xu ◽  
Shufang Cai ◽  
Jiaxin Zhao ◽  
Ke Xu ◽  
Hao Ji ◽  
...  

Pyroptosis is a novel programmed cell death process that promotes the release of interleukin-1β (IL-1β) and interleukin-18 (IL-18) by activating inflammasomes and gasdermin D (GSDMD), leading to cell swelling and rupture. Pyroptosis is involved in the regulation of the occurrence and development of cardiovascular and cerebrovascular diseases, tumors, and nerve injury. Diabetes is a metabolic disorder characterized by long-term hyperglycemia, insulin resistance, and chronic inflammation. The people have paid more and more attention to the relationship between pyroptosis, diabetes, and its complications, especially its important regulatory significance in diabetic neurological diseases, such as diabetic encephalopathy (DE) and diabetic peripheral neuropathy (DPN). This article will give an in-depth overview of the relationship between pyroptosis, diabetes, and its related neuropathy, and discuss the regulatory pathway and significance of pyroptosis in diabetes-associated neuropathy.


2021 ◽  
Vol 22 (18) ◽  
pp. 9844
Author(s):  
Huibin Wang ◽  
Shichao Zhang ◽  
Yingying Qu ◽  
Rui Gao ◽  
Yuxiong Xiao ◽  
...  

Seedless fruit is a feature appreciated by consumers. The ovule abortion process is highly orchestrated and controlled by numerous environmental and endogenous signals. However, the mechanisms underlying ovule abortion in pear remain obscure. Here, we found that gibberellins (GAs) have diverse functions during ovules development between seedless pear ‘1913’ and seeded pear, and that GA4+7 activates a potential programmed cell death process in ‘1913’ ovules. After hormone analyses, strong correlations were determined among jasmonic acid (JA), ethylene and salicylic acid (SA) in seedless and seeded cultivars, and GA4+7 treatments altered the hormone accumulation levels in ovules, resulting in significant correlations between GA and both JA and ethylene. Additionally, SA contributed to ovule abortion in ‘1913’. Exogenously supplying JA, SA or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid promoted ‘Bartlett’ seed death. The regulatory mechanism in which ethylene controls ovule death has been demonstrated; therefore, JA’s role in regulating ‘1913’ ovule abortion was investigated. A further study identified that the JA signaling receptor MYC2 bound the SENESCENCE-ASSOCIATED 39 promoter and triggered its expression to regulate ovule abortion. Thus, we established ovule abortion-related relationships between GA and the hormones JA, ethylene and SA, and we determined their synergistic functions in regulating ovule death.


2021 ◽  
Vol 22 (17) ◽  
pp. 9331
Author(s):  
Martial Mbefo ◽  
Adeline Berger ◽  
Karine Schouwey ◽  
Xavier Gérard ◽  
Corinne Kostic ◽  
...  

Inherited retinal dystrophies (IRD) are due to various gene mutations. Each mutated gene instigates a specific cell homeostasis disruption, leading to a modification in gene expression and retinal degeneration. We previously demonstrated that the polycomb-repressive complex-1 (PRC1) markedly contributes to the cell death process. To better understand these mechanisms, we herein study the role of PRC2, specifically EZH2, which often initiates the gene inhibition by PRC1. We observed that the epigenetic mark H3K27me3 generated by EZH2 was progressively and strongly expressed in some individual photoreceptors and that the H3K27me3-positive cell number increased before cell death. H3K27me3 accumulation occurs between early (accumulation of cGMP) and late (CDK4 expression) events of retinal degeneration. EZH2 hyperactivity was observed in four recessive and two dominant mouse models of retinal degeneration, as well as two dog models and one IRD patient. Acute pharmacological EZH2 inhibition by intravitreal injection decreased the appearance of H3K27me3 marks and the number of TUNEL-positive cells revealing that EZH2 contributes to the cell death process. Finally, we observed that the absence of the H3K27me3 mark is a biomarker of gene therapy treatment efficacy in XLRPA2 dog model. PRC2 and PRC1 are therefore important actors in the degenerative process of multiple forms of IRD.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-19
Author(s):  
Rogério De Freitas Lacerda ◽  
Abigail Gonçalves da Silva ◽  
Isabela Cristina Sena Romano

Neural plasticity is a consequence of a delicate balance between the processes of neurodegeneration and neurogenesis. When neurodegeneration overcomes neurogenesis, neurodegenerative diseases occur, which affect cognitive functions such as memory, language, and executive functions. Neurodegeneration, the process of neuronal cell death, presents several aspects that were categorized according to their macroscopic and/or morphological characteristics. The concept of apoptosis, autophagy, and necrosis is still widely used today. On the other hand, more in-depth forms emerge in the clinical and academia, describing the cascade of cell death events through biochemical approaches, and the essential (causal) and accessory (correlative) aspects of the cell death process. New concepts were introduced, addressed in the modules of signal translation involving issues such as the initiation, execution, and propagation of cell death, as well as the pathophysiological relevance of each of the main types. Currently, twelve types of cell death are already defined, not only apoptosis, necrosis, and autophagy. In this review, we will address the main mechanisms of cell death, with special emphasis on the participation of caspases and other proteins in these mechanisms. We will discuss some types of cell death such as extrinsic and intrinsic apoptosis, necrosis, necroptosis, and autophagy-dependent cell death. We hope to elucidate key points in molecular systems, including the receptors involved in cell death and their role in neurodegeneration, and showing that neurodegeneration has characteristics beyond morphological (apoptosis and necrosis).


Sign in / Sign up

Export Citation Format

Share Document