Formation of extra-digits induced by surgical removal of the apical ectodermal ridge of the chick embryo leg bud in the stages previous to the onset of interdigital cell death

1987 ◽  
Vol 176 (3) ◽  
pp. 393-399 ◽  
Author(s):  
J. M. Hurle ◽  
Y. Ganan
Development ◽  
1986 ◽  
Vol 94 (1) ◽  
pp. 231-244
Author(s):  
J. M. Hurle ◽  
Y. Gañan

In the present work, we have analysed the possible involvement of ectodermal tissue in the control of interdigital mesenchymal cell death. Two types of experiments were performed in the stages previous to the onset of interdigital cell death: (i) removal of the AER of the interdigit; (ii) removal of the dorsal ectoderm of the interdigit. After the operation embryos were sacrificed at 10–12h intervals and the leg buds were studied by whole-mount cartilage staining, vital staining with neutral red and scanning electron microscopy. Between stages 27 and 30, ridge removal caused a local inhibition of the growth of the interdigit. In a high percentage of the cases, ridge removal at these stages was followed 30–40 h later by the formation of ectopic nodules of cartilage in the interdigit. The incidence of ectopic cartilage formation was maximum at stage 29 (60%). In all cases, cell death took place on schedule although the intensity and extent of necrosis appeared diminished in relation to the intensity of inhibition of interdigital growth and to the presence of interdigital cartilages. Ridge removal at stage 31 did not cause inhibition of the growth of the interdigit and ectopic chondrogenesis was only detected in 3 out of 35 operated embryos. Dorsal ectoderm removal from the proximal zone of the interdigit at stage 29 caused the chondrogenesis of the proximal interdigital mesenchyme in 6 out of 18 operated embryos. The pattern of neutral red vital staining was consistent with these results revealing a partial inhibition of interdigital cell death in the proximal zone of the interdigit. It is proposed that under the present experimental conditions the mesenchymal cells are diverted from the death programme by a primary transformation into cartilage.


Author(s):  
M.A. Cuadros ◽  
M.J. Martinez-Guerrero ◽  
A. Rios

In the chick embryo retina (days 3-4 of incubation), coinciding with an increase in cell death, specialized phagocytes characterized by intense acid phosphatase activity have been described. In these preparations, all free cells in the vitreal humor (vitreal cells) were strongly labeled. Conventional TEM and SEM techniques were used to characterize them and attempt to determine their relationship with retinal phagocytes.Two types of vitreal cells were distinguished. The first are located at some distance from the basement membrane of the neuroepithelium, and are rounded, with numerous vacuoles and thin cytoplasmic prolongations. Images of exo- and or endocytosis were frequent; the cells showed a well-developed Golgi apparatus (Fig. 1) In SEM images, the cells was covered with short cellular processes (Fig. 3). Cells lying parallel to or alongside the basement membrane are elongated. The plasma membrane is frequently in intimate contact with the basement membrane. These cells have generally a large cytoplasmic expansion (Fig. 5).


2006 ◽  
Vol 21 (1) ◽  
pp. 194-205 ◽  
Author(s):  
Ghanashyam D. Ghadge ◽  
Lijun Wang ◽  
Kamal Sharma ◽  
Anna Liza Monti ◽  
Vytas Bindokas ◽  
...  

Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 285-289
Author(s):  
John F. Fallon ◽  
Jo Ann Cameron

Cell death accompanies the formation of free digits in birds and mammals. However, in species with webbing between the adult digits, little or no cell death occurs in the prospectively webbed region of the developing interdigit. Cell death does not occur during the formation of free digits in amphibians. In this paper we report that cell death accompanies the formation of the digits in snapping and painted turtles and in the skink (a lizard). We conclude that cell death accompanying the formation of free digits had its origin at the point of amniote emergence during evolution.


1936 ◽  
Vol 64 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Raymond C. Parker

1. Fragments of breast muscle from a 12 day old chick embryo have been kept alive in single flasks for an entire year without being transferred. The nutrient materials were supplied by frequent applications of adult fowl serum diluted with Tyrode solution. 2. When fragments of fixed tissues are cultivated in serum, cell multiplication and cell death are both reduced to an extremely low level. 3. The presence of a plasma coagulum is not essential to the continued survival and further development of tissues cultivated inserum. 4. The fibrinogen, prothrombin, and fibrin of coagulated plasma are not essential to the development of connective tissue fibers in vitro.


2011 ◽  
Vol 55 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Anna Gibson ◽  
Neil Robinson ◽  
Andrea Streit ◽  
Guojun Sheng ◽  
Claudio D. Stern

Development ◽  
1977 ◽  
Vol 40 (1) ◽  
pp. 1-21
Author(s):  
Dennis Summerbell

Removal of the apical ectodermal ridge causes a reduction in the rate of outgrowth of the wing-bud and the loss of distal parts. More specifically it causes a short-term increase in cell density and cell death and a decrease in the rate of cell proliferation. The evidence supports the hypothesis of density-dependent control of cell division and suggests that there may also be a mechanism regulating skeletal length at the time of differentiation. An informal model is presented to explain the observations.


Sign in / Sign up

Export Citation Format

Share Document