AbstractThe complex cardiovascular disorder Cantu Syndrome arises from gain-of-function mutations in either KCNJ8 or ABCC9, the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (KATP) channels. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determine the mechanism by which KATP function is altered by several mutations in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/W in TMD2. Mutations were engineered at their equivalent position in rat SUR2A (D207E, Y981S, G985E, M1056I and R1150Q/W) and functional effects were investigated using macroscopic rubidium (86Rb+) efflux assays and patch clamp electrophysiology. The results show that D207E increases KATP activity by increasing intrinsic stability of the open state, whilst the cluster of Y981S/G985E/M1056I mutations, as well as R1150Q/W, augment Mg-nucleotide activation. The response of mutant channels to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS, was also tested. There was no major effect on glibenclamide sensitivity for the D207E, Y981S, G985E or M1056I mutations, but glutamine and tryptophan substitution at R1150 resulted in significant decreases in potency.