scholarly journals In vivo induction of granulopoiesis in visceral yolksac cells by foetal hepatic factors

Development ◽  
1983 ◽  
Vol 73 (1) ◽  
pp. 87-95
Author(s):  
M. A. Anckaert ◽  
M. Symann

In order to evaluate the hypothetical activity of foetal hepatic factors on putative yolk-sac haemopoietic stem cells we used the Double Diffusion Chamber (DDC) technique. The DDC were made of a regulator compartment, where foetal hepatic tissue was introduced and a test compartment where visceral yolk-sac cells were cultured. In this system a hepatic signal induced the yolk-sac stem cells to differentiate along the granulocytic pathway but did not stimulate yolk-sac CFUs growth. Contrary to CFUs originating from foetal liver or adult bone marrow, yolk-sac CFUs do not increase numerically in diffusion chamber culture.

1979 ◽  
Vol 27 (1) ◽  
pp. 366-370 ◽  
Author(s):  
D E Swartzendruber ◽  
B J Price ◽  
L B Rall

Stem cells of the mouse testicular teratocarcinoma are capable of giving rise in vivo and in vitro to a wide variety of cell and tissue types representative of each embryonic germ layer. Multiangle light-scattering measurements in a flow system have been made on these stem cells and on a variety of their differentiated derivatives. This technique is capable of distinguishing the stem cells from parietal yolk sac cells, visceral yolk sac cells, neuronal cells and squamous cells. However, multipotential stem cells cannot be distinguished from stem cells that are restricted in their development to a single pathway.


Development ◽  
1986 ◽  
Vol 97 (1) ◽  
pp. 169-176
Author(s):  
H. Sobis ◽  
J. Goebels ◽  
M. Vandeputte

The proliferation and differentiation potentiality of the rat visceral yolk sac was investigated both in organ culture and after grafting in vivo. Using alkaline phosphatase as a marker for germ cells, it was shown that these cells are absent in the 12-day-old visceral yolk sac examined before and after organ culture. Therefore, the only cells that proliferate and differentiate must be of endodermal and/or mesodermal origin. By labelling the cells with [3H]thymidine both the endodermal and mesodermal cells were found to proliferate. After 10 days in organ culture or implantation in vivo differentiated tissues (e.g. squamous epidermis, endodermal cysts and giant trophoblast cells) were regularly detected. Several of these differentiated cells contained the radiolabel indicating that they derived from the initial proliferating endodermal and/or mesodermal cells.


Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 225-240
Author(s):  
H. Sobis ◽  
L. Van Hove ◽  
M. Vandeputte

A sequential morphological study of the initial cellular events in teratoma induction by displaced visceral yolk sac after foetectomy in rats was undertaken. This study led to the observation that apart from proliferation of cells displaying definite endodermal or mesodermal characteristics,a population of poorly differentiated cells appeared some days after the surgical procedure. It is very likely that these poorly differentiated cells are stem cells from which differentiated structures originate afterwards by a process of redifferentiation. The development of granulation tissue rich in capillaries seems to enhance this process. Similarities and differences with blastema formation are discussed.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1599-1599
Author(s):  
Kathleen E McGrath ◽  
Jenna M Frame ◽  
Anne Koniski ◽  
Paul D Kingsley ◽  
James Palis

Abstract Abstract 1599 The ontogeny of hematopoiesis in mammalian embryos is complicated by the requirement for functional blood cells prior to the emergence of hematopoietic stem cells or the bone marrow microenvironment. In the murine embryo, transplantable HSC are first evident at embryonic day (E) 10.5 and the first few HSC are found in the fetal liver hematopoietic environment by E12.5. However, two overlapping waves of hematopoietic potential arise in the yolk sac before E10.5. The first “primitive” wave produces progenitors from E7.25 to E8.5 with primitive erythroid, megakaryocyte and macrophage potentials. The resulting primitive erythroid cells mature within the circulation and support embryonic growth past E9.5. At E8.5, a second wave of hematopoiesis begins in the yolk sac and generates definitive erythroid and multiple myeloid progenitors that are the proposed source of the hematopoietic progenitors seeding the fetal liver before HSC colonization. We have identified a cell population displaying a unique cell surface immunophenotype in the E9.5 yolk sac that contains the potential to form definitive erythroid cells, megakaryocytes, macrophages and all forms of granulocytes within days of in vitro culture. Furthermore, all definitive hematopoietic colony-forming cells (BFU-E, CFC-myeloid and HPP-CFC) in the E9.5 yolk sac have this immunophenotype. These erythro-myeloid progenitors (EMP) are lineage-negative and co-express ckit, CD41, CD16/32 and Endoglin. Interestingly, this is not an immunophenotype evident in the adult bone marrow. Other markers that have been associated with HSC formation (AA4.1, ScaI) or with lymphoid potential (IL7R, Flt3) are not present on these cells at E9.5. Consistent with the lack of lymphoid markers, we also do not observe short-term development of B-cells (CD19+B220+ expressing Rag2 RNA) in cultures of the E9.5 sorted EMP, while bone marrow Lin-/ckit+/ScaI- cells do form B-cells under the same conditions. Clonal analysis of sorted EMP cells revealed single cells with both erythroid and granulocyte potential, similar to the common myeloid progenitors in adult bone marrow. Though these EMP are enriched at E9.5 in the yolk sac, they are also found at low levels in the fetal blood, embryo proper and placenta, consistent with their entrance into the circulation. By E10.5, EMP were most highly enriched in the newly formed fetal liver. Additionally by E12.5, a time when the first few HSCs are detected in the fetal liver, we find active erythropoiesis and granulopoiesis in the liver and the first definitive red blood cells and neutrophils in the bloodstream. Therefore, we believe the yolk sac definitive progenitors' fate is to populate the fetal liver and thus provide the first definitive erythrocytes and granulocytes for the embryo. The differentiation of embryonic stem cells (ES) and induced pluripotent stem cells (iPS) cells into mature cells types offers the hope of cell-based therapies. Analysis of differentiating murine ES cells reveals overlapping waves of primitive and definitive hematopoietic colony forming potential. We demonstrate the appearance of an EMP-like (ckit+/CD41+/FcGR+) population coincident with the emergence of definitive hematopoietic progenitors during murine ES cell differentiation as embryoid bodies. We have confirmed with colony forming assays that definitive hematopoietic potential is associated with this immunophenotypic group. Our studies support the concept that blood cell emergence during ES cell differentiation closely mimics pre-HSC hematopoiesis in the yolk sac. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document