scholarly journals Brachial muscles of dystrophic chick embryos atypically sustain interaction with thoracic nerves

Development ◽  
1987 ◽  
Vol 99 (1) ◽  
pp. 77-87
Author(s):  
J. Butler ◽  
E. Cosmos

Previous analyses of experimental chick embryos of normal lineage demonstrate the inability of brachial muscles to sustain a successful union with foreign nerves derived from a thoracic neural tube segment transplanted to the brachial region at day 2 in ovo (day 2E). The present experiments were performed to determine if mutant chick embryos afflicted with hereditary muscular dystrophy would respond similarly to this experimental manipulation. Using the same criteria applied to our analysis of experimental normal embryos, our results demonstrated that dystrophic brachial muscles were capable of maintaining a compatible union with foreign thoracic nerves throughout the experimental period analysed. Significant muscle growth occurred, intramuscular nerve branches were maintained, motor endplates formed and wing motility was equivalent to that of unoperated dystrophic embryos. Thus, foreign nerves rejected by normal brachial muscles were accepted by brachial muscles of the mutant dystrophic embryo.

Development ◽  
1986 ◽  
Vol 95 (1) ◽  
pp. 147-168
Author(s):  
Jane Butler ◽  
Peter Cauwenbergs ◽  
Ethel Cosmos

The extent of interaction between brachial muscles and foreign (thoracic) nerves of the chick embryo was determined during an extended period of development in ovo from the perspectives of innervation pattern, function (motility analyses), muscle growth (quantitative analyses of muscle volume) and fibre-type expression (myosin-ATPase profiles). Results indicated that according to all parameters analysed, initially a compatible union existed between the foreign nerves and their muscle targets. During subsequent stages of development, deterioration of the once compatible relationship emerged, until eventually denervation of muscles, i.e. an actual loss of intramuscular nerve branches, was observed. The process of denervation, which proceeded at a differential rate among individual muscles, however was restricted to brachial muscles derived from the premuscle masses of the wing bud. In contrast, brachial muscles of myotomal origin were spared the fate of wing-bud-derived muscles and maintained a successful union with the foreign nerves.


Development ◽  
1983 ◽  
Vol 73 (1) ◽  
pp. 1-15
Author(s):  
Gary C. Schoenwolf ◽  
Marilyn Fisher

Chick embryos at stages 8 to 9 were treated in ovo with Streptomyces hyaluronidase (SH) to determine whether neurulation occurs normally in embryos depleted of hyaluronic acid, a major component of the extracellular matrix. Open neural tube defects occurred in 60–94 % (depending on the particular enzyme batch) of the embryos treated with SH and examined after an additional 24 h of incubation. Defects were confined mainly to the spinal cord. The neural folds underwent elevation in defective regions but failed to converge and fuse across the dorsal midline. The extracellular matrix of embryos treated with SH was depleted consistently, as determined with sections stained with Alcian blue. Control experiments were done to ensure that neural tube defects were not caused by non-specific protease contamination of SH, or by digestion products of hyaluronic acid. We propose several plausible and testable mechanisms through which the extracellular matrix might influence the complex developmental process of neurulation.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3025-3036 ◽  
Author(s):  
J. Fontaine-Perus ◽  
P. Halgand ◽  
Y. Cheraud ◽  
T. Rouaud ◽  
M.E. Velasco ◽  
...  

Chimeras were prepared by transplanting fragments of neural primordium from 8- to 8.5- and 9-day postcoital mouse embryos into 1.5- and 2-day-old chick embryos at different axial levels. Mouse neuroepithelial cells differentiated in ovo and organized to form the different cellular compartments normally constituting the central nervous system.The graft also entered into the development of the peripheral nervous system through migration of neural crest cells associated with mouse neuroepithelium. Depending on the graft level, mouse crest cells participated in the formation of various derivatives such as head components, sensory ganglia, orthosympathetic ganglionic chain, nerves and neuroendocrine glands. Tenascin knockout mice, which express lacZ instead of tenascin and show no tenascin production (Saga, Y., Yagi, J., Ikawa, Y., Sakakura, T. and Aizawa, S. (1992) Genes and Development 6, 1821–1838), were specifically used to label Schwann cells lining nerves derived from the implant. Although our experiments do not consider how mouse neural tube can participate in the mechanism required to maintain myogenesis in the host somites, they show that the grafted neural tube behaves in the same manner as the chick host neural tube. Together with our previous results on somite development (Fontaine-Perus, J., Jarno, V., Fournier Le Ray, C., Li, Z. and Paulin, D. (1995) Development 121, 1705–1718), this study shows that chick embryo constitutes a privileged environment, facilitating access to the developmental potentials of normal or defective mammalian cells. It allows the study of the histogenesis and precise timing of a known structure, as well as the implication of a given gene at all equivalent mammalian embryonic stages.


2012 ◽  
Vol 28 (7) ◽  
pp. 969-976 ◽  
Author(s):  
Füsun Demirçivi Özer ◽  
Adıgüzel Demirel ◽  
Özlem Yılmaz Dilsiz ◽  
Murat Aydın ◽  
Nail Özdemir ◽  
...  

2009 ◽  
Vol 3 (1) ◽  
pp. 24-28 ◽  
Author(s):  
Jasper van Aalst ◽  
Toon F. M. Boselie ◽  
Emile A. M. Beuls ◽  
Johan S. H. Vles ◽  
Henny W. M. van Straaten

Object The origin of spinal congenital dermal sinuses is not known. A local nondisjunction of the closing neural tube and the epidermal ectoderm is thought to be the cause of this malformation. In this experimental study, a nondisjunction was mimicked in chick embryos to create an animal model for the dermal sinus. Methods A piece of amniotic tissue was implanted in the closing neural tube in ovo in chick embryos at 2 days of incubation. A total of 50 embryos were manipulated. After a further incubation time of 2–7 days, the embryos were macroscopically and histologically evaluated. Results Dermal sinus–like anomalies were induced in 24 embryos. The induced abnormalities varied from superficial, epidermal lesions to epidermal dimples continuing as a strand of tissue toward the neural tube. This strand invariably was of nonneuronal origin. Additionally, in 3 embryos a split cord malformation was noted, most likely caused by damage to the neural tube during implantation. Conclusions Implantation of donor amniotic tissue in the closing chick neural tube does result in a dimple, from which a strand of tissue continues to the neural tube in various cases, indicating that formation of a dermal sinus–like anomaly can be successfully induced by experimental continuation of the connection between neural tube and surface ectoderm. This finding strengthens the hypothesis that a human dermal sinus arises after nondisjunction of neural tube and surface ectoderm.


2017 ◽  
Vol 27 (1) ◽  
pp. 14-29 ◽  
Author(s):  
Michelle Wehling-Henricks ◽  
Steven S Welc ◽  
Guiseppina Samengo ◽  
Chiara Rinaldi ◽  
Catherine Lindsey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document