Phosphorylated baculovirus p10 is a heat-stable microtubule-associated protein associated with process formation in Sf9 cells

1992 ◽  
Vol 102 (4) ◽  
pp. 739-752
Author(s):  
S. Cheley ◽  
K.S. Kosik ◽  
P. Paskevich ◽  
S. Bakalis ◽  
H. Bayley

Insect ovarian Sf9 cells extend processes with complex morphologies when infected with a recombinant baculovirus encoding the catalytic subunit of protein kinase A. Within the shafts of the processes are abundant microtubules, which, in contrast to those in Sf9 cells expressing the microtubule-associated protein tau, are generally not organized into parallel bundles. During infection the late viral polypeptide p10 becomes phosphorylated by the protein kinase A catalytic subunit at its penultimate residue, Ser92. The expression or phosphorylation of other major host cell or viral polypeptides does not change, compared with polypeptides from a wild-type viral infection. Once phosphorylated, p10 associates with microtubules in the infected cells and may thereby play a role in process formation.

2004 ◽  
Vol 3 (1) ◽  
pp. 190-199 ◽  
Author(s):  
Alejandro Cassola ◽  
Marc Parrot ◽  
Susana Silberstein ◽  
Beatrice B. Magee ◽  
Susana Passeron ◽  
...  

ABSTRACT The fungal pathogen Candida albicans switches from a yeast-like to a filamentous mode of growth in response to a variety of environmental conditions. We examined the morphogenetic behavior of C. albicans yeast cells lacking the BCY1 gene, which encodes the regulatory subunit of protein kinase A. We cloned the BCY1 gene and generated a bcy1 tpk2 double mutant strain because a homozygous bcy1 mutant in a wild-type genetic background could not be obtained. In the bcy1 tpk2 mutant, protein kinase A activity (due to the presence of the TPK1 gene) was cyclic AMP independent, indicating that the cells harbored an unregulated phosphotransferase activity. This mutant has constitutive protein kinase A activity and displayed a defective germinative phenotype in N-acetylglucosamine and in serum-containing medium. The subcellular localization of a Tpk1-green fluorescent protein (GFP) fusion protein was examined in wild-type, tpk2 null, and bcy1 tpk2 double mutant strains. The fusion protein was observed to be predominantly nuclear in wild-type and tpk2 strains. This was not the case in the bcy1 tpk2 double mutant, where it appeared dispersed throughout the cell. Coimmunoprecipitation of Bcy1p with the Tpk1-GFP fusion protein demonstrated the interaction of these proteins inside the cell. These results suggest that one of the roles of Bcy1p is to tether the protein kinase A catalytic subunit to the nucleus.


1998 ◽  
Vol 18 (3) ◽  
pp. 1416-1423 ◽  
Author(s):  
Robert D. Cauthron ◽  
Karen B. Carter ◽  
Susanne Liauw ◽  
Robert A. Steinberg

ABSTRACT Phosphorylation of the catalytic subunit of cyclic AMP-dependent protein kinase, or protein kinase A, on Thr-197 is required for optimal enzyme activity, and enzyme isolated from either animal sources or bacterial expression strains is found phosphorylated at this site. Autophosphorylation of Thr-197 occurs in Escherichia coliand in vitro but is an inefficient intermolecular reaction catalyzed primarily by active, previously phosphorylated molecules. In contrast, the Thr-197 phosphorylation of newly synthesized protein kinase A in intact S49 mouse lymphoma cells is both efficient and insensitive to activators or inhibitors of intracellular protein kinase A. Using [35S]methionine-labeled, nonphosphorylated, recombinant catalytic subunit as the substrate in a gel mobility shift assay, we have identified an activity in extracts of protein kinase A-deficient S49 cells that phosphorylates catalytic subunit on Thr-197. The protein kinase A kinase activity partially purified by anion-exchange and hydroxylapatite chromatography is an efficient catalyst of protein kinase A phosphorylation in terms of both a lowKm for ATP and a rapid time course. Phosphorylation of wild-type catalytic subunit by the kinase kinase activates the subunit for binding to a pseudosubstrate peptide inhibitor of protein kinase A. By both the gel shift assay and a [γ-32P]ATP incorporation assay, the enzyme is active on wild-type catalytic subunit and on an inactive mutant with Met substituted for Lys-72 but inactive on a mutant with Ala substituted for Thr-197. Combined with the results from mutant subunits, phosphoamino acid analysis suggests that the enzyme is specific for phosphorylation of Thr-197.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1507-1520 ◽  
Author(s):  
A Meléndez ◽  
W Li ◽  
D Kalderon

Abstract The DC2 gene was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4331-4339 ◽  
Author(s):  
M.A. Price ◽  
D. Kalderon

The Hedgehog signal transduction pathway is involved in diverse patterning events in many organisms. In Drosophila, Hedgehog signaling regulates transcription of target genes by modifying the activity of the DNA-binding protein Cubitus interruptus (Ci). Hedgehog signaling inhibits proteolytic cleavage of full-length Ci (Ci-155) to Ci-75, a form that represses some target genes, and also converts the full-length form to a potent transcriptional activator. Reduction of protein kinase A (PKA) activity also leads to accumulation of full-length Ci and to ectopic expression of Hedgehog target genes, prompting the hypothesis that PKA might normally promote cleavage to Ci-75 by directly phosphorylating Ci-155. Here we show that a mutant form of Ci lacking five potential PKA phosphorylation sites (Ci5m) is not detectably cleaved to Ci-75 in Drosophila embryos. Moreover, changes in PKA activity dramatically altered levels of full-length wild-type Ci in embryos and imaginal discs, but did not significantly alter full-length Ci5m levels. We corroborate these results by showing that Ci5m is more active than wild-type Ci at inducing ectopic transcription of the Hh target gene wingless in embryos and that inhibition of PKA enhances induction of wingless by wild-type Ci but not by Ci5m. We therefore propose that PKA phosphorylation of Ci is required for the proteolysis of Ci-155 to Ci-75 in vivo. We also show that the activity of Ci5m remains Hedgehog responsive if expressed at low levels, providing further evidence that the full-length form of Ci undergoes a Hedgehog-dependent activation step.


Structure ◽  
2015 ◽  
Vol 23 (12) ◽  
pp. 2331-2340 ◽  
Author(s):  
Amit Das ◽  
Oksana Gerlits ◽  
Jerry M. Parks ◽  
Paul Langan ◽  
Andrey Kovalevsky ◽  
...  

2019 ◽  
Vol 294 (46) ◽  
pp. 17262-17277 ◽  
Author(s):  
Rong Yu ◽  
Tong Liu ◽  
Chenfei Ning ◽  
Fei Tan ◽  
Shao-Bo Jin ◽  
...  

Recruitment of the GTPase dynamin-related protein 1 (Drp1) to mitochondria is a central step required for mitochondrial fission. Reversible Drp1 phosphorylation has been implicated in the regulation of this process, but whether Drp1 phosphorylation at Ser-637 determines its subcellular localization and fission activity remains to be fully elucidated. Here, using HEK 293T cells and immunofluorescence, immunoblotting, RNAi, subcellular fractionation, co-immunoprecipitation assays, and CRISPR/Cas9 genome editing, we show that Drp1 phosphorylated at Ser-637 (Drp1pS637) resides both in the cytosol and on mitochondria. We found that the receptors mitochondrial fission factor (Mff) and mitochondrial elongation factor 1/2 (MIEF1/2) interact with and recruit Drp1pS637 to mitochondria and that elevated Mff or MIEF levels promote Drp1pS637 accumulation on mitochondria. We also noted that protein kinase A (PKA), which mediates phosphorylation of Drp1 on Ser-637, is partially present on mitochondria and interacts with both MIEFs and Mff. PKA knockdown did not affect the Drp1-Mff interaction, but slightly enhanced the interaction between Drp1 and MIEFs. In Drp1-deficient HEK 293T cells, both phosphomimetic Drp1-S637D and phospho-deficient Drp1-S637A variants, like wild-type Drp1, located to the cytosol and to mitochondria and rescued a Drp1 deficiency-induced mitochondrial hyperfusion phenotype. However, Drp1-S637D was less efficient than Drp1-WT and Drp1-S637A in inducing mitochondrial fission. In conclusion, the Ser-637 phosphorylation status in Drp1 is not a determinant that controls Drp1 recruitment to mitochondria.


Sign in / Sign up

Export Citation Format

Share Document