scholarly journals The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria

2019 ◽  
Vol 294 (46) ◽  
pp. 17262-17277 ◽  
Author(s):  
Rong Yu ◽  
Tong Liu ◽  
Chenfei Ning ◽  
Fei Tan ◽  
Shao-Bo Jin ◽  
...  

Recruitment of the GTPase dynamin-related protein 1 (Drp1) to mitochondria is a central step required for mitochondrial fission. Reversible Drp1 phosphorylation has been implicated in the regulation of this process, but whether Drp1 phosphorylation at Ser-637 determines its subcellular localization and fission activity remains to be fully elucidated. Here, using HEK 293T cells and immunofluorescence, immunoblotting, RNAi, subcellular fractionation, co-immunoprecipitation assays, and CRISPR/Cas9 genome editing, we show that Drp1 phosphorylated at Ser-637 (Drp1pS637) resides both in the cytosol and on mitochondria. We found that the receptors mitochondrial fission factor (Mff) and mitochondrial elongation factor 1/2 (MIEF1/2) interact with and recruit Drp1pS637 to mitochondria and that elevated Mff or MIEF levels promote Drp1pS637 accumulation on mitochondria. We also noted that protein kinase A (PKA), which mediates phosphorylation of Drp1 on Ser-637, is partially present on mitochondria and interacts with both MIEFs and Mff. PKA knockdown did not affect the Drp1-Mff interaction, but slightly enhanced the interaction between Drp1 and MIEFs. In Drp1-deficient HEK 293T cells, both phosphomimetic Drp1-S637D and phospho-deficient Drp1-S637A variants, like wild-type Drp1, located to the cytosol and to mitochondria and rescued a Drp1 deficiency-induced mitochondrial hyperfusion phenotype. However, Drp1-S637D was less efficient than Drp1-WT and Drp1-S637A in inducing mitochondrial fission. In conclusion, the Ser-637 phosphorylation status in Drp1 is not a determinant that controls Drp1 recruitment to mitochondria.

2016 ◽  
Vol 213 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Kenneth R. Pryde ◽  
Heather L. Smith ◽  
Kai-Yin Chau ◽  
Anthony H.V. Schapira

Mitochondrial fission is essential for the degradation of damaged mitochondria. It is currently unknown how the dynamin-related protein 1 (DRP1)–associated fission machinery is selectively targeted to segregate damaged mitochondria. We show that PTEN-induced putative kinase (PINK1) serves as a pro-fission signal, independently of Parkin. Normally, the scaffold protein AKAP1 recruits protein kinase A (PKA) to the outer mitochondrial membrane to phospho-inhibit DRP1. We reveal that after damage, PINK1 triggers PKA displacement from A-kinase anchoring protein 1. By ejecting PKA, PINK1 ensures the requisite fission of damaged mitochondria for organelle degradation. We propose that PINK1 functions as a master mitophagy regulator by activating Parkin and DRP1 in response to damage. We confirm that PINK1 mutations causing Parkinson disease interfere with the orchestration of selective fission and mitophagy by PINK1.


Development ◽  
1999 ◽  
Vol 126 (19) ◽  
pp. 4331-4339 ◽  
Author(s):  
M.A. Price ◽  
D. Kalderon

The Hedgehog signal transduction pathway is involved in diverse patterning events in many organisms. In Drosophila, Hedgehog signaling regulates transcription of target genes by modifying the activity of the DNA-binding protein Cubitus interruptus (Ci). Hedgehog signaling inhibits proteolytic cleavage of full-length Ci (Ci-155) to Ci-75, a form that represses some target genes, and also converts the full-length form to a potent transcriptional activator. Reduction of protein kinase A (PKA) activity also leads to accumulation of full-length Ci and to ectopic expression of Hedgehog target genes, prompting the hypothesis that PKA might normally promote cleavage to Ci-75 by directly phosphorylating Ci-155. Here we show that a mutant form of Ci lacking five potential PKA phosphorylation sites (Ci5m) is not detectably cleaved to Ci-75 in Drosophila embryos. Moreover, changes in PKA activity dramatically altered levels of full-length wild-type Ci in embryos and imaginal discs, but did not significantly alter full-length Ci5m levels. We corroborate these results by showing that Ci5m is more active than wild-type Ci at inducing ectopic transcription of the Hh target gene wingless in embryos and that inhibition of PKA enhances induction of wingless by wild-type Ci but not by Ci5m. We therefore propose that PKA phosphorylation of Ci is required for the proteolysis of Ci-155 to Ci-75 in vivo. We also show that the activity of Ci5m remains Hedgehog responsive if expressed at low levels, providing further evidence that the full-length form of Ci undergoes a Hedgehog-dependent activation step.


Author(s):  
Elzbieta Luchowska ◽  
Renata Kloc ◽  
Bartosz Olajossy ◽  
Sebastian Wnuk ◽  
Marian Wielosz ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Maureen J. Donlin ◽  
Rajendra Upadhya ◽  
Kimberly J. Gerik ◽  
Woei Lam ◽  
Laura G. VanArendonk ◽  
...  

ABSTRACTCryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis ofC. neoformans, and biosynthesis and repair of the wall is primarily controlled by the cell wall integrity (CWI) signaling pathway. Previous work has shown that deletion of genes encoding the four major kinases in the CWI signaling pathway, namely,PKC1,BCK1,MKK2, andMPK1results in severe cell wall phenotypes, sensitivity to a variety of cell wall stressors, and for Mpk1, reduced virulence in a mouse model. Here, we examined the global transcriptional responses to gene deletions ofBCK1,MKK2, andMPK1compared to wild-type cells. We found that over 1,000 genes were differentially expressed in one or more of the deletion strains, with 115 genes differentially expressed in all three strains, many of which have been identified as genes regulated by the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. Biochemical measurements of cAMP levels in the kinase deletion strains revealed significantly less cAMP in all of the deletion strains compared to the wild-type strain. The deletion strains also produced significantly smaller capsules than the wild-type KN99 strain did under capsule-inducing conditions, although the levels of capsule they shed were similar to those shed by the wild type. Finally, addition of exogenous cAMP led to reduced sensitivity to cell wall stress and restored surface capsule to levels near those of wild type. Thus, we have direct evidence of cross talk between the CWI and cAMP/PKA pathways that may have important implications for regulation of cell wall and capsule homeostasis.IMPORTANCECryptococcus neoformans is a fungal pathogen of immunocompromised people that causes fatal meningitis. The fungal cell wall is essential to viability and pathogenesis ofC. neoformans, and biosynthesis and repair of the wall are primarily controlled by the cell wall integrity (CWI) signaling pathway. In this study, we demonstrate that deletion of any of three core kinases in the CWI pathway impacts not only the cell wall but also the amount of surface capsule. Deletion of any of the kinases results in significantly reduced cellular cyclic AMP (cAMP) levels, and addition of exogenous cAMP rescues the capsule defect and some cell wall defects, supporting a direct role for the CWI pathway in regulation of capsule in conjunction with the cAMP/protein kinase A pathway.


2004 ◽  
Vol 3 (1) ◽  
pp. 190-199 ◽  
Author(s):  
Alejandro Cassola ◽  
Marc Parrot ◽  
Susana Silberstein ◽  
Beatrice B. Magee ◽  
Susana Passeron ◽  
...  

ABSTRACT The fungal pathogen Candida albicans switches from a yeast-like to a filamentous mode of growth in response to a variety of environmental conditions. We examined the morphogenetic behavior of C. albicans yeast cells lacking the BCY1 gene, which encodes the regulatory subunit of protein kinase A. We cloned the BCY1 gene and generated a bcy1 tpk2 double mutant strain because a homozygous bcy1 mutant in a wild-type genetic background could not be obtained. In the bcy1 tpk2 mutant, protein kinase A activity (due to the presence of the TPK1 gene) was cyclic AMP independent, indicating that the cells harbored an unregulated phosphotransferase activity. This mutant has constitutive protein kinase A activity and displayed a defective germinative phenotype in N-acetylglucosamine and in serum-containing medium. The subcellular localization of a Tpk1-green fluorescent protein (GFP) fusion protein was examined in wild-type, tpk2 null, and bcy1 tpk2 double mutant strains. The fusion protein was observed to be predominantly nuclear in wild-type and tpk2 strains. This was not the case in the bcy1 tpk2 double mutant, where it appeared dispersed throughout the cell. Coimmunoprecipitation of Bcy1p with the Tpk1-GFP fusion protein demonstrated the interaction of these proteins inside the cell. These results suggest that one of the roles of Bcy1p is to tether the protein kinase A catalytic subunit to the nucleus.


2002 ◽  
Vol 22 (8) ◽  
pp. 2716-2727 ◽  
Author(s):  
Hidenori Shiraha ◽  
Angela Glading ◽  
Jeffrey Chou ◽  
Zongchao Jia ◽  
Alan Wells

ABSTRACT We have shown previously that the ELR-negative CXC chemokines interferon-inducible protein 10, monokine induced by gamma interferon, and platelet factor 4 inhibit epidermal growth factor (EGF)-induced m-calpain activation and thereby EGF-induced fibroblast cell motility (H. Shiraha, A. Glading, K. Gupta, and A. Wells, J. Cell Biol. 146:243-253, 1999). However, how this cross attenuation could be accomplished remained unknown since the molecular basis of physiological m-calpain regulation is unknown. As the initial operative attenuation signal from the CXCR3 receptor was cyclic AMP (cAMP), we verified that this second messenger blocked EGF-induced motility of fibroblasts (55% ± 4.5% inhibition) by preventing rear release during active locomotion. EGF-induced calpain activation was inhibited by cAMP activation of protein kinase A (PKA), as the PKA inhibitors H-89 and Rp-8Br-cAMPS abrogated cAMP inhibition of both motility and calpain activation. We hypothesized that PKA might negatively modulate m-calpain in an unexpected manner by directly phosphorylating m-calpain. A mutant human large subunit of m-calpain was genetically engineered to negate a putative PKA consensus sequence in the regulatory domain III (ST369/370AA) and was expressed in NR6WT mouse fibroblasts to represent about 30% of total m-calpain in these cells. This construct was not phosphorylated by PKA in vitro while a wild-type construct was, providing proof of the principle that m-calpain can be directly phosphorylated by PKA at this site. cAMP suppressed EGF-induced calpain activity of cells overexpressing a control wild-type human m-calpain (83% ± 3.7% inhibition) but only marginally suppressed that of cells expressing the PKA-resistant mutant human m-calpain (25% ± 5.5% inhibition). The EGF-induced motility of the cells expressing the PKA-resistant mutant also was not inhibited by cAMP. Structural modeling revealed that new constraints resulting from phosphorylation at serine 369 would restrict domain movement and help “freeze” m-calpain in an inactive state. These data point to a novel mechanism of negative control of calpain activation, direct phosphorylation by PKA.


Blood ◽  
2012 ◽  
Vol 119 (10) ◽  
pp. 2358-2367 ◽  
Author(s):  
Zbigniew Zasłona ◽  
Carlos H. Serezani ◽  
Katsuhide Okunishi ◽  
David M. Aronoff ◽  
Marc Peters-Golden

Abstract Prostaglandin E2 (PGE2) is a lipid mediator that acts by ligating 4 distinct G protein–coupled receptors, E prostanoid (EP) 1 to 4. Previous studies identified the importance of PGE2 in regulating macrophage functions, but little is known about its effect on macrophage maturation. Macrophage maturation was studied in vitro in bone marrow cell cultures, and in vivo in a model of peritonitis. EP2 was the most abundant PGE2 receptor expressed by bone marrow cells, and its expression further increased during macrophage maturation. EP2-deficient (EP2−/−) macrophages exhibited enhanced in vitro maturation compared with wild-type cells, as evidenced by higher F4/80 expression. An EP2 antagonist also increased maturation. In the peritonitis model, EP2−/− mice exhibited a higher percentage of F4/80high/CD11bhigh cells and greater expression of macrophage colony-stimulating factor receptor (M-CSFR) in both the blood and the peritoneal cavity. Subcutaneous injection of the PGE2 analog misoprostol decreased M-CSFR expression in bone marrow cells and reduced the number of peritoneal macrophages in wild-type mice but not EP2−/− mice. The suppressive effect of EP2 ligation on in vitro macrophage maturation was mimicked by a selective protein kinase A agonist. Our findings reveal a novel role for PGE2/EP2/protein kinase A signaling in the suppression of macrophage maturation.


2002 ◽  
Vol 49 (4) ◽  
pp. 959-968 ◽  
Author(s):  
Magdalena Frajnt ◽  
Małgorzata Cytryńska ◽  
Teresa Jakubowicz

It was found that wild type yeast Pichia pastoris can tolerate vanadate concentration as high as 25 mM in the growth medium. Moreover, four vanadate-resistant P. pastoris strains designated JC100/1, JC100/3, JC100/9 and JC100/15 exhibiting tolerance up to 150 mM vanadate were selected. Growth of P. pastoris was correlated with vanadate to vanadyl reduction and its accumulation in the growth medium. In two selected strains, JC100/9 and JC100/15, protein kinase A activity was much higher in comparison to the wild type strain even without vanadate addition to the growth medium. Moreover, in the presence of vanadate, protein kinase A activity was significantly increased in the wild type and the vanadate-resistant JC100/1 and JC100/3 strains. It was also found that phosphorylation of a 40 kDa protein associated with ribosomes occured in all vanadate-resistant strains from the logarithmic, while in the wild type strain from the stationary growth phase. From the presented results it can be concluded that a protein kinase A signalling pathway(s) might be involved in the mechanism of P. pastoris vanadate resistance. The results also indicate a possible role of the 40 kDa protein in protection of P. pastoris against vanadate toxicity.


2019 ◽  
Vol 97 (5) ◽  
pp. 526-535 ◽  
Author(s):  
Shanmukha K. Doddi ◽  
Githavani Kummari ◽  
Jagannadham M.V. ◽  
Arunasree M. Kalle

Given the well-established diversified signaling pathways for histone deacetylase 4 (HDAC4) and the regulation of HDAC4 by several post-translational modifications (PTMs), including phosphorylation, sumoylation, and ubiquitination, an unbiased and detailed analysis of HDAC4 PTMs is needed. In this study, we used matrix-assisted laser desorption/ionization time of flight (MALDI-TOF/TOF) to describe phosphorylation at serine 584 (Ser584) along with already-known dual phosphorylation at serines 265 and 266 (Ser265/266), that together regulate HDAC4 activity. Overexpression of site-specific HDAC4 mutants (S584A, S265/266A) in HEK 293T cells, followed by HDAC activity assays, revealed the mutants to be less active than the wild-type protein. In vitro kinase assays have established that Ser584 and Ser265/266 are phosphorylated by protein kinase A (PKA). Luciferase assays driven by the myocyte enhancer factor 2 (MEF2) promoter and real-time PCR analysis of the MEF2 target genes show that the S584A and S265/266A mutants are less repressive than the wild-type. Furthermore, treatment with PKA activators such as 8-Bromo-cAMP and forskolin, and silencing either by shRNA or its inhibitor H-89 in a mouse myoblast cell line (C2C12) and in a non-muscle human cell line (K562), confirmed in vivo phosphorylation of HDAC4 in C2C12 but not in K562 cells, indicating the specific functional significance of HDAC4 phosphorylation in muscle cells. Thus, we identified PKA-induced Ser584 phosphorylation of HDAC4 as a yet unknown regulatory mechanism of the HDAC4–MEF2 axis.


Sign in / Sign up

Export Citation Format

Share Document