The cytoplasmic domain of syndecan-1 is not required for association with Triton X-100-insoluble material

1994 ◽  
Vol 107 (6) ◽  
pp. 1571-1581 ◽  
Author(s):  
H.M. Miettinen ◽  
M. Jalkanen

Cell surface heparan sulfate proteoglycans such as syndecan-1 bind various extracellular matrix proteins and have been suggested to interact with the cytoskeleton. Such interactions are thought to be important for stabilizing cell morphology. Syndecan-1 resists extraction with Triton X-100. This insolubility was reported not to be affected by removal of the glycosaminoglycan chains, suggesting that the insolubility is not due to binding to the extracellular matrix, but rather to an association with the actin cytoskeleton (Rapraeger, A., Jalkanen, M. and Bernfield, M. (1986) J. Cell Biol. 103, 2683–2696). To examine further the interaction of syndecan-1 with the Triton X-100-insoluble residue, we expressed wild-type mouse syndecan-1 and a cytoplasmic deletion mutant (tail-less) in Chinese hamster ovary cells. We observed that both the wild-type and the tail-less syndecan-1 were partly insoluble in Triton X-100. The insolubility was not affected by increasing temperature (37 degrees C or 50 degrees C) or by cytochalasin D. Removal of the glycosaminoglycan chains from the ectodomain, however, resulted in complete Triton X-100 solubility, unlike previous reports. Syndecan-1 could also be released into the Triton X-100-soluble fraction by addition of heparin or heparan sulfate to the extraction medium. We conclude that the cytoplasmic domain of syndecan-1 is not responsible for Triton X-100 insolubility. Instead, our results indicate that Triton X-100 insolubility is caused by an interaction of syndecan-1 molecules with other cellular and/or extracellular molecules mediated by the heparan sulfate chains.

Pathology ◽  
1993 ◽  
Vol 25 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Wanda B. Mackinnon ◽  
Marlen Dyne ◽  
Rebecca Hancock ◽  
Carolyn E. Mountford ◽  
Adrienne J. Grant ◽  
...  

1989 ◽  
Vol 9 (4) ◽  
pp. 1754-1758
Author(s):  
T M Underhill ◽  
W F Flintoff

A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from either wild-type Chinese hamster ovary or human G2 cells. Primary and secondary transfectants regained the ability to take up methotrexate in a manner similar to that of wild-type cells, and in the case of those transfected with human DNA, to contain human-specific DNA sequences. The complementation by DNA-mediated gene transfer of this methotrexate-resistant phenotype provides a basis for the cloning of a gene involved in methotrexate uptake.


1983 ◽  
Vol 3 (7) ◽  
pp. 1172-1181
Author(s):  
W E Bradley

Two classes of cell lines heterozygous at the galactokinase (glk) locus have been isolated from Chinese hamster ovary cells. Class I, selected by plating nonmutagenized wild-type cells at low density in medium containing 2-deoxygalactose at a partially selective concentration, underwent subsequent mutation to the glk-/- genotype at a low frequency (approximately 10(-6) per cell), which was increased by mutagenesis. Class II heterozygotes, isolated by sib selection from mutagenized wild-type cells, had a higher spontaneous frequency of mutation to the homozygous state (approximately 10(-4) per cell), which was not affected by mutagenesis. About half of the glk-/- mutants derived from a class II heterozygote, but not the heterozygote itself, were functionally hemizygous at the syntenic thymidine kinase (tk) locus. Similarly, a tk+/- heterozygote with characteristics analogous to the class II glk+/- cell lines underwent high-frequency mutation to tk-/-, and most of these mutants, but not the tk+/- heterozygote, were functionally hemizygous at the glk locus. A model is proposed, similar to that for the mutational events at the adenine phosphoribosyl transferase locus (W. E. C. Bradley and D. Letovanec, Somatic Cell Genet. 8:51-66, 1982), of two different events, high and low frequency, being responsible for mutation at either of the linked loci tk and glk. The low-frequency event may be a point mutation, but the high-frequency event, in many instances, involves coordinated inactivation of a portion of a chromosome carrying the two linked alleles. Class II heterozygotes would be generated as a result of a low-frequency event at one allele, and class I heterozygotes would be generated by a high-frequency event. Supporting this model was the demonstration that all class I glk+/- lines examined were functionally hemizygous at tk.


1986 ◽  
Vol 102 (5) ◽  
pp. 1567-1575 ◽  
Author(s):  
K F Kozarsky ◽  
H A Brush ◽  
M Krieger

The structure and processing of low density lipoprotein (LDL) receptors in wild-type and LDL receptor-deficient mutant Chinese hamster ovary cells was examined using polyclonal anti-receptor antibodies. As previously reported for human LDL receptors, the LDL receptors in wild-type Chinese hamster ovary cells were synthesized as precursors which were extensively processed by glycosylation to a mature form. In the course of normal receptor turnover, an apparently unglycosylated portion of the cysteine-rich N-terminal LDL binding domain of the receptor is proteolytically removed. The LDL receptor-deficient mutants fall into four complementation groups, ldlA, ldlB, ldlC, and ldlD; results of the analysis of ldlB, ldlC, and ldlD mutants are described in the accompanying paper (Kingsley, D. M., K. F. Kozarsky, M. Segal, and M. Krieger, 1986, J. Cell. Biol, 102:1576-1585). Analysis of ldlA cells has identified three classes of mutant alleles at the ldlA locus: null alleles, alleles that code for normally processed receptors that cannot bind LDL, and alleles that code for abnormally processed receptors. The abnormally processed receptors were continually converted to novel unstable intracellular intermediates. We also identified a compound-heterozygous mutant and a heterozygous revertant which indicate that the ldlA locus is diploid. In conjunction with other genetic and biochemical data, the finding of multiple mutant forms of the LDL receptor in ldlA mutants, some of which appeared together in the same cell, confirm that the ldlA locus is the structural gene for the LDL receptor.


Sign in / Sign up

Export Citation Format

Share Document