The mutant not enough muscles (nem) reveals reduction of the Drosophila embryonic muscle pattern

1995 ◽  
Vol 108 (4) ◽  
pp. 1443-1454 ◽  
Author(s):  
S. Burchard ◽  
A. Paululat ◽  
U. Hinz ◽  
R. Renkawitz-Pohl

In a search for mutations affecting embryonic muscle development in Drosophila we identified a mutation caused by the insertion of a P-element, which we called not enough muscles (nem). The phenotype of the P-element mutation of the nem gene suggests that it may be required for the development of the somatic musculature and the chordotonal organs of the PNS, while it is not involved in the development of the visceral mesoderm and the dorsal vessel. Mutant embryos are characterized by partial absence of muscles, monitored by immunostainings with mesoderm-specific anti-beta 3 tubulin and anti-myosin heavy chain antibodies. Besides these muscle distortions, defects in the peripheral nervous system were found, indicating a dual function of the nem gene product. Ethyl methane sulfonate-induced alleles for the P-element mutation were created for a detailed analysis. One of these alleles is characterized by unfused myoblasts which express beta 3 tubulin and myosin heavy chain, indicating the state of cell differentiation.

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


1982 ◽  
Vol 79 (10) ◽  
pp. 3087-3091 ◽  
Author(s):  
C. R. Saidapet ◽  
H. N. Munro ◽  
K. Valgeirsdottir ◽  
S. Sarkar

1991 ◽  
Vol 143 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Marsha E. Pomeroy ◽  
Jeanne Bentley Lawrence ◽  
Robert H. Singer ◽  
Susan Billings-Gagliardi

2020 ◽  
Author(s):  
Jingwei Yue ◽  
Xinhua Hou ◽  
Xin Liu ◽  
Ligang Wang ◽  
Hongmei Gao ◽  
...  

Abstract Background: The development of skeletal muscle during the embryonic stage in pigs is precisely regulated by transcriptional regulation, which depends on chromatin accessibility. However, how chromatin accessibility plays a regulatory role during embryonic skeletal muscle development in pigs has not been reported. To gain insight into the landscape of chromatin accessibility and the associated genome-wide transcriptome during embryonic muscle development, we performed ATAC-seq and RNA-seq on skeletal muscle of pig embryos at 45, 70 and 100 days post coitus (dpc). Results: In total, 21638, 35447 and 60181 unique regions (or peaks) were found across 45 dpc (LW45), 70 dpc (LW70) and 100 dpc (LW100) embryos, respectively. More than 91% of peaks were annotated within -1 kb to 100 bp of transcription start sites (TSSs). First, widespread increases in specific accessible chromatin regions (ACRs) from 45 to 100 dpc embryos suggested that the regulatory mechanisms became increasingly complicated during embryonic development. Second, the findings of integrated ATAC-seq and RNA-seq analyses showed that not only the numbers but also the peak intensities of ACRs could control the expression of associated genes. Finally, motif screening of stage-specific ACRs revealed some transcription factors that regulated muscle development-related genes, such as MyoD, Mef2c, Mef2d and Pax7. Several potential transcriptional repressors, including E2F6, GRHL2, OTX2 and CTCF, were identified among those genes that exhibited different change trends between the ATAC-seq and RNA-seq data. Conclusions: This work indicates that chromatin accessibility plays an important regulatory role in the embryonic muscle development of pigs and regulates the temporal and spatial expression patterns of key genes in muscle development by influencing the binding of transcription factors. Our results contribute to a better understanding of the regulatory dynamics of genes involved in pig embryonic skeletal muscle development.


Gene ◽  
2013 ◽  
Vol 515 (1) ◽  
pp. 144-154 ◽  
Author(s):  
Md. Asaduzzaman ◽  
Dadasaheb B. Akolkar ◽  
Shigeharu Kinoshita ◽  
Shugo Watabe

Sign in / Sign up

Export Citation Format

Share Document