Degradation of phagosomal components in late endocytic organelles

1998 ◽  
Vol 111 (1) ◽  
pp. 141-148
Author(s):  
T.E. Tjelle ◽  
B. Saigal ◽  
M. Froystad ◽  
T. Berg

Phagosomes are formed when phagocytic cells ingest particles such as bacteria, viruses or synthetic beads of different kinds. The environment within the phagosome gradually changes to generate degradative conditions. These changes require multiple interactions between the maturing phagosomes and the endocytic and the biosynthetic pathway. The phagosomes probably communicate with endocytic organelles by a transient fusion event, often referred to as the ‘kiss-and-run’ hypothesis. We have studied the role of endocytic organelles in the phagocytic pathway of J774 cells, a mouse macrophage cell line. We have used magnetic Dynabeads coated with 125ITC-IgG and 125ITC-OVA as phagocytic probes and were able to isolate the phagosomal fraction by means of a magnet. To separate lysosomes from other organelles in the endocytic pathway we allowed the cells to endocytose a pulse of colloidal gold particles complexed with ovalbumin. By combining this density shift technique with subcellular fractionation of a postnuclear supernatant in Percoll gradients we could isolate three endocytic fractions corresponding to early endosomes (the light Percoll fraction), late endosomes (the dense Percoll fraction) and lysosomes (the gold fraction). We observed that the proteins linked to the ingested beads are initially cleaved in the phagosomes. This cleavage is inhibited by leupeptin, a thiol-protease inhibitor, and requires an acidic environment. However, efficient communication between the phagosomes and the endocytic pathway leads to the transfer of dissociated phagocytosed peptides of different sizes to late endosomes and lysosomes for further processing. Consequently, the late endosomes and the lysosomes may be involved in the degradation of phagocytosed compounds.

1990 ◽  
Vol 110 (4) ◽  
pp. 1013-1022 ◽  
Author(s):  
D M Ward ◽  
D P Hackenyos ◽  
J Kaplan

Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1096 ◽  
Author(s):  
Guerra ◽  
Bucci

RAB7 is a small guanosine triphosphatase (GTPase) extensively studied as regulator of vesicular trafficking. Indeed, its role is fundamental in several steps of the late endocytic pathway, including endosome maturation, transport from early endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and lysosomes in the perinuclear region and lysosomal biogenesis. Besides endocytosis, RAB7 is important for a number of other cellular processes among which, autophagy, apoptosis, signaling, and cell migration. Given the importance of RAB7 in these cellular processes, the interest to study the role of RAB7 in cancer progression is widely grown. Here, we describe the current understanding of oncogenic and oncosuppressor functions of RAB7 analyzing cellular context and other environmental factors in which it elicits pro and/or antitumorigenic effects. We also discuss the role of RAB7 in cisplatin resistance associated with its ability to regulate the late endosomal pathway, lysosomal biogenesis and extracellular vesicle secretion. Finally, we examined the potential cancer therapeutic strategies targeting the different molecular events in which RAB7 is involved.


1996 ◽  
Vol 109 (12) ◽  
pp. 2905-2914 ◽  
Author(s):  
T.E. Tjelle ◽  
A. Brech ◽  
L.K. Juvet ◽  
G. Griffiths ◽  
T. Berg

Although endosomal proteolysis has been reported (e.g. for peptide hormones and lysosomal enzymes), lysosomes are believed to be the main site of degradation in the endocytic pathway. We have studied the separate roles of lysosomes and prelysosomal endocytic organelles in the degradation of ovalbumin in J774 cells. The ovalbumin was labelled with 125I-tyramine cellobiose (125I-TC-ova). The labelled degradation products formed from this probe are trapped at the site of formation. To separate lysosomes efficiently from prelysosomal endocytic organelles we allowed the cells to endocytose a pulse of colloidal gold particles complexed with ovalbumin. By combining this density shift technique with subcellular fractionation of a postnuclear supernatant in Percoll gradients we could isolate three fractions that were sequentially involved in the endocytic pathway: a light Percoll fraction, a dense Percoll fraction and a gold fraction. The light Percoll fraction contained early endosomes since it was transferrin positive and received endocytic markers such as ovalbumin and horseradish peroxidase (HRP) early (< 5 minutes) after internalization. The dense Percoll fraction was transferrin negative, rab7 positive and received endocytic markers after 10–15 minutes of internalization. The gold-filled fraction was negative for both transferrin and rab7 but highly enriched in the lysosomal enzyme beta-hexosaminidase and was therefore defined as a lysosome. To study the role of endosomes and lysosomes in the degradation of endocytosed material we allowed the cells to take up (via the mannose receptor) 125I-TC-ova. It was found that the main degradation of 125I-TC-ova (measured as acid soluble radioactivity trapped in the organelle) took place in the late endosomes (and not in the lysosomes containing the bulk of the lysosomal enzymes). Our data therefore suggest that the late endosomes operate as an early lysosomal compartment. The terminal lysosomes may serve as storage bodies for acid hydrolases that may be called upon when needed (for instance during phagocytosis).


1999 ◽  
Vol 10 (12) ◽  
pp. 4107-4120 ◽  
Author(s):  
Caterina Valetti ◽  
Dawn M. Wetzel ◽  
Michael Schrader ◽  
M. Josh Hasbani ◽  
Steven R. Gill ◽  
...  

The flow of material from peripheral, early endosomes to late endosomes requires microtubules and is thought to be facilitated by the minus end-directed motor cytoplasmic dynein and its activator dynactin. The microtubule-binding protein CLIP-170 may also play a role by providing an early link to endosomes. Here, we show that perturbation of dynactin function in vivo affects endosome dynamics and trafficking. Endosome movement, which is normally bidirectional, is completely inhibited. Receptor-mediated uptake and recycling occur normally, but cells are less susceptible to infection by enveloped viruses that require delivery to late endosomes, and they show reduced accumulation of lysosomally targeted probes. Dynactin colocalizes at microtubule plus ends with CLIP-170 in a way that depends on CLIP-170’s putative cargo-binding domain. Overexpression studies using p150Glued, the microtubule-binding subunit of dynactin, and mutant and wild-type forms of CLIP-170 indicate that CLIP-170 recruits dynactin to microtubule ends. These data suggest a new model for the formation of motile complexes of endosomes and microtubules early in the endocytic pathway.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


1992 ◽  
Vol 103 (4) ◽  
pp. 1139-1152
Author(s):  
J.W. Kok ◽  
K. Hoekstra ◽  
S. Eskelinen ◽  
D. Hoekstra

Recycling pathways of the sphingolipid glucosylceramide were studied by employing a fluorescent analog of glucosylceramide, 6(-)[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosyl sphingosine (C6-NBD-glucosylceramide). Direct recycling of the glycolipid from early endosomes to the plasma membrane occurs, as could be shown after treating the cells with the microtubule-disrupting agent nocodazole, which causes inhibition of the glycolipid's trafficking from peripheral early endosomes to centrally located late endosomes. When the microtubuli are intact, at least part of the glucosylceramide is transported from early to late endosomes together with ricin. Interestingly, also N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a membrane marker of the fluid-phase endocytic pathway, is transported to this endosomal compartment. However, in contrast to both ricin and N-Rh-PE, the glucosylceramide can escape from this organelle and recycle to the plasma membrane. Monensin and brefeldin A have little effect on this recycling pathway, which would exclude extensive involvement of early Golgi compartments in recycling. Hence, the small fraction of the glycolipid that colocalizes with transferrin (Tf) in the Golgi area might directly recycle via the trans-Golgi network. When the intracellular pH was lowered to 5.5, recycling was drastically reduced, in accordance with the impeding effect of low intracellular pH on vesicular transport during endocytosis and in the biosynthetic pathway. Our results thus demonstrate the existence of at least two recycling pathways for glucosylceramide and indicate the relevance of early endosomes in recycling of both proteins and lipids.


2000 ◽  
Vol 11 (7) ◽  
pp. 2201-2211 ◽  
Author(s):  
Lisya Gerez ◽  
Karin Mohrmann ◽  
Marcel van Raak ◽  
Mandy Jongeneelen ◽  
Xiao Zhen Zhou ◽  
...  

Transport through the endocytic pathway is inhibited during mitosis. The mechanism responsible for this inhibition is not understood. Rab4 might be one of the proteins involved as it regulates transport through early endosomes, is phosphorylated by p34cdc2 kinase, and is translocated from early endosomes to the cytoplasm during mitosis. We investigated the perturbation of the rab4 GTPase cycle during mitosis. Newly synthesized rab4 was less efficiently targeted to membranes during mitosis. By subcellular fractionation of mitotic cells, we found a large increase of cytosolic rab4 in the active GTP-form, an increase not associated with the cytosolic rabGDP chaperone GDI. Instead, phosphorylated rab4 is in a complex with the peptidyl-prolyl isomerase Pin1 during mitosis, but not during interphase. Our results show that less efficient recruitment of rab4 to membranes and a bypass of the normal GDI-mediated retrieval of rab4GDP from early endosomes reduce the amount of rab4GTP on membranes during mitosis. We propose that phosphorylation of rab4 inhibits both the recruitment of rab4 effector proteins to early endosomes and the docking of rab4-containing transport vesicles. This mechanism might contribute to the inhibition of endocytic membrane transport during mitosis.


2020 ◽  
Vol 21 (24) ◽  
pp. 9352
Author(s):  
Manh Tien Tran ◽  
Yuka Okusha ◽  
Yunxia Feng ◽  
Masatoshi Morimatsu ◽  
Penggong Wei ◽  
...  

Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase.


2000 ◽  
Vol 11 (10) ◽  
pp. 3289-3298 ◽  
Author(s):  
Wolfram Antonin ◽  
Claudia Holroyd ◽  
Ritva Tikkanen ◽  
Stefan Höning ◽  
Reinhard Jahn

Endobrevin/VAMP-8 is an R-SNARE localized to endosomes, but it is unknown in which intracellular fusion step it operates. Using subcellular fractionation and quantitative immunogold electron microscopy, we found that endobrevin/VAMP-8 is present on all membranes known to communicate with early endosomes, including the plasma membrane, clathrin-coated pits, late endosomes, and membranes of thetrans-Golgi network. Affinity-purified antibodies that block the ability of endobrevin/VAMP-8 to form SNARE core complexes potently inhibit homotypic fusion of both early and late endosomes in vitro. Fab fragments were as active as intact immunoglobulin Gs. Recombinant endobrevin/VAMP-8 inhibited both fusion reactions with similar potency. We conclude that endobrevin/VAMP-8 operates as an R-SNARE in the homotypic fusion of early and late endosomes.


1991 ◽  
Vol 112 (2) ◽  
pp. 245-255 ◽  
Author(s):  
J E Park ◽  
J M Lopez ◽  
E B Cluett ◽  
W J Brown

Cells contain an intracellular compartment that serves as both the "prelysosomal" delivery site for newly synthesized lysosomal enzymes by the mannose 6-phosphate (Man6P) receptor and as a station along the endocytic pathway to lysosomes. We have obtained mAbs to a approximately 57-kD membrane glycoprotein, (called here plgp57), found predominantly in this prelysosomal endosome compartment. This conclusion is supported by the following results: (a) plgp57 was primarily found in a population of late endosomes that were located just distal to the 20 degrees C block site in the endocytic pathway to lysosomes (approximately 83% of the prelysosomes were positive for plgp57 but less than 5% of the early endosomes had detectable amounts of this marker); (b) plgp57 and the cation-independent (CI) Man6P receptor were located in many of the same intracellular vesicles; (c) plgp57 was found in the membranes of an acidic compartment; (d) immunoelectron microscopy showed that plgp57 was located in characteristic multilamellar- and multivesicular-type vacuoles believed to be prelysosomal endosomes; and (e) cell fractionation studies demonstrated that plgp57 was predominantly found in low density organelles which comigrated with late endosomes and CI Man6P receptors, and only approximately 10-15% of the antigen was found in high density fractions containing the majority of secondary lysosomes. These results indicate that plgp57 is a novel marker for a unique prelysosomal endosome compartment that is the site of confluence of the endocytic and biosynthetic pathways to lysosomes.


Sign in / Sign up

Export Citation Format

Share Document