scholarly journals Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTP gamma S

1998 ◽  
Vol 111 (13) ◽  
pp. 1877-1888 ◽  
Author(s):  
R. Pepperkok ◽  
M. Lowe ◽  
B. Burke ◽  
T.E. Kreis

Microinjected GTP gamma S revealed three distinct steps in the exocytic transport of the temperature sensitive glycoprotein of vesicular stomatitis virus (ts-O45-G) from the ER to the cell surface in intact Vero cells. While COPII dependent export of ts-O45-G from the ER is blocked in cells injected with recombinant protein of a dominant mutant of SAR1a (SAR1a[H79G]) inhibited in GTP hydrolysis, neither injected GTP gamma S nor antibodies against beta-COP (anti-EAGE) interfere with this transport step significantly. In contrast, transport to the Golgi complex is blocked by 50 microM GTP gamma S, a dominant mutant of ARF1 (ARF1[Q71L]) inhibited in GTP hydrolysis, or microinjected anti-EAGE, but injected Sar1a[H79G]p has no effect. Microinjection of GTP gamma S or expression of ARF[Q71L] rapidly induces accumulation of COPI coated vesicular structures lacking ts-O45-G. Finally, transport of ts-O45-G from the trans-Golgi network (TGN) to the cell surface is inhibited only by high concentrations of GTP gamma S (500 microM). Interestingly, this step is only partially brefeldin A sensitive, and injected antibodies against beta-COP and p200/myosin II, a TGN membrane associated protein, have no effect. These data provide first strong in vivo evidence for at least three distinct steps in the exocytic pathway of mammalian cells regulated by different sets of GTPases and coat proteins. COPII, but not COPI, is required for ER export of ts-O45-G. COPI plays a role in subsequent transport to the Golgi complex, and a so far unidentified GTP gamma S sensitive coat appears to be involved in transport from the TGN to the cell surface.

1981 ◽  
Vol 89 (1) ◽  
pp. 29-34 ◽  
Author(s):  
R B Dickson ◽  
M C Willingham ◽  
I Pastan

alpha 2-Macroglobulin (alpha 2 M) was adsorbed to colloidal gold and used as a new tool in the study of receptor-mediated endocytosis. alpha 2 M-gold is easy to prepare and is clearly visualized at the electron microscope level. When cells were incubated with alpha 2 M-gold at 0 degrees C, gold was visualized both diffusely over the cell surface and concentrated in coated pits. After cells to which alpha 2 M-gold had been bound at 0 degrees C were warmed, the gold was rapidly internalized into uncoated vesicles, previously termed receptosomes. After 30 min of incubation or longer, gold was found in small lysosomes and, later, in large lysosomes and very small vesicles in the region of the Golgi complex. This pattern of localization is similar to that previously described, using peroxidase-labeled anti-alpha 2 M antibodies. By incubating cells with both alpha 2 M-gold and vesicular stomatitis virus (VSV), we studied the internalization of these two markers simultaneously. VSV and alpha 2 M-gold rapidly clustered in the same coated pits and were internalized in the same receptosomes. Proteins and hormones adsorbed to gold may be useful in the study of receptor-mediated endocytosis.


1987 ◽  
Vol 104 (3) ◽  
pp. 749-760 ◽  
Author(s):  
W E Balch ◽  
K R Wagner ◽  
D S Keller

Transport of the vesicular stomatitis virus-encoded glycoprotein (G protein) between the endoplasmic reticulum (ER) and the cis Golgi compartment has been reconstituted in a cell-free system. Transfer is measured by the processing of the high mannose (man GlcNAc2) ER form of G protein to the man5GlcNAc5 form by the cis Golgi enzyme alpha-mannosidase I. G protein is rapidly and efficiently transported to the Golgi complex by a process resembling that observed in vivo. G protein is trimmed from the high mannose form to the man5GlcNAc2 form without the appearance of the intermediate man GlcNAc2 oligosaccharide species, as is observed in vivo. G protein is found in a sealed membrane-bound compartment before and after incubation. Processing in vitro is sensitive to detergent, and the Golgi alpha-mannosidase I inhibitor 1-deoxymannorjirimycin. Transport between the ER and Golgi complex in vitro requires the addition of a high speed supernatant (cytosol) of cell homogenates, and requires energy in the form of ATP. Efficient reconstitution of export of protein from the ER requires the preparation of homogenates from mitotic cell populations in which the nuclear envelope, ER, and Golgi compartments have been physiologically disassembled before cell homogenization. These results suggest that the high efficiency of transport observed here may require reassembly of functional organelles in vitro.


2013 ◽  
Vol 202 (2) ◽  
pp. 241-250 ◽  
Author(s):  
Yuichi Wakana ◽  
Julien Villeneuve ◽  
Josse van Galen ◽  
David Cruz-Garcia ◽  
Mitsuo Tagaya ◽  
...  

Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.


2005 ◽  
Vol 169 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Daniela A. Sahlender ◽  
Rhys C. Roberts ◽  
Susan D. Arden ◽  
Giulietta Spudich ◽  
Marcus J. Taylor ◽  
...  

Myosin VI plays a role in the maintenance of Golgi morphology and in exocytosis. In a yeast 2-hybrid screen we identified optineurin as a binding partner for myosin VI at the Golgi complex and confirmed this interaction in a range of protein interaction studies. Both proteins colocalize at the Golgi complex and in vesicles at the plasma membrane. When optineurin is depleted from cells using RNA interference, myosin VI is lost from the Golgi complex, the Golgi is fragmented and exocytosis of vesicular stomatitis virus G-protein to the plasma membrane is dramatically reduced. Two further binding partners for optineurin have been identified: huntingtin and Rab8. We show that myosin VI and Rab8 colocalize around the Golgi complex and in vesicles at the plasma membrane and overexpression of constitutively active Rab8-Q67L recruits myosin VI onto Rab8-positive structures. These results show that optineurin links myosin VI to the Golgi complex and plays a central role in Golgi ribbon formation and exocytosis.


2007 ◽  
Vol 129 (2) ◽  
pp. 268-269 ◽  
Author(s):  
Siwarutt Boonyarattanakalin ◽  
Jianfang Hu ◽  
Sheryl A. Dykstra-Rummel ◽  
Avery August ◽  
Blake R. Peterson

Vaccine ◽  
2009 ◽  
Vol 27 (22) ◽  
pp. 2930-2939 ◽  
Author(s):  
J. Erik Johnson ◽  
John W. Coleman ◽  
Narender K. Kalyan ◽  
Priscilla Calderon ◽  
Kevin J. Wright ◽  
...  

1989 ◽  
Vol 92 (4) ◽  
pp. 633-642
Author(s):  
J.K. Burkhardt ◽  
Y. Argon

The appearance of newly synthesized glycoprotein (G) of vesicular stomatitis virus at the surface of infected BHK cells is inhibited reversibly by treatment with carbonylcyanide m-chlorophenylhydrazone (CCCP). Under the conditions used, CCCP treatment depleted the cellular ATP levels by 40–60%, consistent with inhibition of transport at energy-requiring stages. The G protein that accumulates in cells treated with CCCP is heterogeneous. Most of it is larger than the newly synthesized G protein, is acylated with palmitic acid, and is resistant to endoglycosidase H (Endo H). Most of the arrested G protein is also sensitive to digestion with neuraminidase, indicating that it has undergone at least partial sialylation. A minority of G protein accumulates under these conditions in a less-mature form, suggesting its inability to reach the mid-Golgi compartment. The oligosaccharides of this G protein are Endo-H-sensitive and seem to be partly trimmed. Whereas sialylated G protein was arrested intracellularly, fucose-labelled G protein was able to complete its transport to the cell surface, indicating that a late CCCP-sensitive step separates sialylation from fucosylation. These post-translational modifications indicate that G protein can be transported as far as the trans-Golgi in the presence of CCCP and is not merely arrested in the endoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document