A mouse model of intestinal stem cell function and regeneration
We present here an in vivo mouse model for intestinal stem cell function and differentiation that uses postnatal intestinal epithelial cell aggregates to generate a differentiated murine small intestinal mucosa with full crypt-villus architecture. The process of neomucosal formation is highly similar to that of intestinal regeneration. Both in vivo grafting and primary culture of these cells reveal two different epithelial cell populations, which display properties consistent with intestinal epithelial transit amplifying and stem cell populations. Using this model system with a mixture of wild-type and transgene marked cells, we have shown that neomucosae originally develop from single aggregates, but that over time the mucosae fuse to form chimaeric mucosae. Despite fusion, the chimaeric mucosae maintain crypt clonality and villus polyclonality, demonstrating that clonal segregation persists during intestinal epithelial regeneration.