scholarly journals Expression of Eph receptors and ephrins is differentially regulated by E-cadherin

2000 ◽  
Vol 113 (10) ◽  
pp. 1793-1802 ◽  
Author(s):  
S. Orsulic ◽  
R. Kemler

E-cadherin is the main cell adhesion molecule of early embryonic and adult epithelial cells. Downregulation of E-cadherin is associated with epithelial-mesenchymal transition during embryonic mesoderm formation and tumor progression. To identify genes whose expression is affected by the loss of E-cadherin, we compared mRNA expression patterns between wild-type and E-cadherin null mutant embryonic stem (ES) cells. We found that expression of several Eph receptors and ephrins is dependent on E-cadherin. Rescue of E-cadherin null ES cells with E-cadherin cDNA restores the wild-type expression pattern of Eph family members. Rescue of E-cadherin null ES cells with N-cadherin cDNA does not restore the wild-type expression pattern, indicating that the regulation of differential expression of Eph family members is specific to E-cadherin. Constitutive ectopic expression of E-cadherin in non-epithelial NIH3T3 cells results in the production of the EphA2 receptor. In epithelial cells, E-cadherin is required for EphA2 receptor localization at cell-cell contacts; in the absence of functional E-cadherin, EphA2 localizes to the perinuclear region. Our results indicate that E-cadherin may be directly or indirectly required for the membrane localization of Eph receptors and their membrane-bound ligands.

2011 ◽  
Vol 2011 ◽  
pp. 1-19 ◽  
Author(s):  
Lisa Mohamet ◽  
Kate Hawkins ◽  
Christopher M. Ward

E-cadherin is the primary cell adhesion molecule within the epithelium, and loss of this protein is associated with a more aggressive tumour phenotype and poorer patient prognosis in many cancers. Loss of E-cadherin is a defining characteristic of epithelial-mesenchymal transition (EMT), a process associated with tumour cell metastasis. We have previously demonstrated an EMT event during embryonic stem (ES) cell differentiation, and that loss of E-cadherin in these cells results in altered growth factor response and changes in cell surface localisation of promigratory molecules. We discuss the implication of loss of E-cadherin in ES cells within the context of cancer stem cells and current models of tumorigenesis. We propose that aberrant E-cadherin expression is a critical contributing factor to neoplasia and the early stages of tumorigenesis in the absence of EMT by altering growth factor response of the cells, resulting in increased proliferation, decreased apoptosis, and acquisition of a stem cell-like phenotype.


1998 ◽  
Vol 141 (2) ◽  
pp. 397-408 ◽  
Author(s):  
Mitinori Saitou ◽  
Kazushi Fujimoto ◽  
Yoshinori Doi ◽  
Masahiko Itoh ◽  
Toyoshi Fujimoto ◽  
...  

Occludin is the only known integral membrane protein of tight junctions (TJs), and is now believed to be directly involved in the barrier and fence functions of TJs. Occludin-deficient embryonic stem (ES) cells were generated by targeted disruption of both alleles of the occludin gene. When these cells were subjected to suspension culture, they aggregated to form simple, and then cystic embryoid bodies (EBs) with the same time course as EB formation from wild-type ES cells. Immunofluorescence microscopy and ultrathin section electron microscopy revealed that polarized epithelial (visceral endoderm-like) cells were differentiated to delineate EBs not only from wild-type but also from occludin-deficient ES cells. Freeze fracture analyses indicated no significant differences in number or morphology of TJ strands between wild-type and occludin-deficient epithelial cells. Furthermore, zonula occludens (ZO)-1, a TJ-associated peripheral membrane protein, was still exclusively concentrated at TJ in occludin-deficient epithelial cells. In good agreement with these morphological observations, TJ in occludin-deficient epithelial cells functioned as a primary barrier to the diffusion of a low molecular mass tracer through the paracellular pathway. These findings indicate that there are as yet unidentified TJ integral membrane protein(s) which can form strand structures, recruit ZO-1, and function as a barrier without occludin.


2008 ◽  
Vol 28 (15) ◽  
pp. 4772-4781 ◽  
Author(s):  
Nicolás Herranz ◽  
Diego Pasini ◽  
Víctor M. Díaz ◽  
Clara Francí ◽  
Arantxa Gutierrez ◽  
...  

ABSTRACT The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2). Embryonic stem (ES) cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumor cells, interference of PRC2 activity prevents the ability of Snail1 to downregulate CDH1 and partially derepresses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to the CDH1 promoter and the trimethylation of lysine 27 in histone H3. Moreover, Snail1 interacts with Suz12 and Ezh2, as shown by coimmunoprecipitation experiments. In conclusion, these results demonstrate that Snail1 recruits PRC2 to the CDH1 promoter and requires the activity of this complex to repress E-cadherin expression.


2020 ◽  
Author(s):  
Jeffrey D Tse ◽  
Robert Moore ◽  
Yue Meng ◽  
Wensi Tao ◽  
Elizabetg R Smith ◽  
...  

Abstract Background Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. Results As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg’s sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across apical surface of multiple adjacent cells, though independent of the formation of tight junctions. Conclusions Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.


2020 ◽  
Author(s):  
Jeffrey D Tse ◽  
Robert Moore ◽  
Yue Meng ◽  
Wensi Tao ◽  
Elizabetg R Smith ◽  
...  

Abstract Background: Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. Results: As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg’s sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized, highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across the apical surface of multiple adjacent cells, though independent of the formation of tight junctions. Conclusions: Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Jessica Rosati ◽  
Francesco Spallotta ◽  
Sara Vincenti ◽  
Diego Arcelli ◽  
Carlo Presutti ◽  
...  

BACKGROUND: microRNAs (miRs) are emerging as important regulators of many cell functions and, possibly, also embryonic stem cells (ES) differentiation. Recently, it has been shown that specific microRNAs may allow ES to discriminate among different developmental lineages. Nitric oxide is a key regulator of vascular function and induces cardiogenesis in embryonic stem cells; however, no data are available about the effect of NO on microRNAs expression patterns, neither in adult nor in stem cells. METHODS AND RESULTS: mouse ES were deprived of Leukemia Inhibitory Factor (LIF) and treated with the NO donor diethylenetriamine nitric oxide adduct (DETA/NO) for 90 minutes and microRNA microarray analysis was performed. Among the differentially expressed microRNAs, we focused on miR429, belonging to the miR200 mirRNA family, which regulates epithelial to mesenchymal transition, targeting ZEB transcription factors. ES cells (5x10 5 ) were exposed from 90 minutes to 24 hours to DETA/NO in the absence of LIF and real time PCR experiments, were performed. We found that miR429 progressively increased along the whole time course, in the presence of DETA/NO, to be upregulated 8 fold with respect to control cells at the 24 hours time point. Moreover, we found that, consistently with miR429 upregulation, NO treatment down-modulated ZEB2/Sip1 transcription factor expression in ES cells. Both antagomir429 and ZEB2/Sip1 overexpression blocked NO-dependent expression of cardiovascular markers, such as Flk-1 and SM22α, in ES, while inducing ES proliferation, indicating the mir429/ZEB circuitry as an important regulator of ES cell fate. To our knowledge, these data identify the first, NO-dependent, microRNA-based mechanism regulating ES development and indicate ZEB2/Sip1 as a novel, potential “stem” gene.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jeffrey D. Tse ◽  
Robert Moore ◽  
Yue Meng ◽  
Wensi Tao ◽  
Elizabeth R. Smith ◽  
...  

Abstract Background Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. Results As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg’s sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized, highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across the apical surface of multiple adjacent cells, though independent of the formation of tight junctions. Conclusions Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.


Genetics ◽  
2000 ◽  
Vol 155 (2) ◽  
pp. 721-731 ◽  
Author(s):  
Teresa D Shippy ◽  
Jianhua Guo ◽  
Susan J Brown ◽  
Richard W Beeman ◽  
Robin E Denell

Abstract The Tribolium castaneum homeotic gene maxillopedia (mxp) is the ortholog of Drosophila proboscipedia (pb). Here we describe and classify available mxp alleles. Larvae lacking all mxp function die soon after hatching, exhibiting strong transformations of maxillary and labial palps to legs. Hypomorphic mxp alleles produce less severe transformations to leg. RNA interference with maxillopedia double-stranded RNA results in phenocopies of mxp mutant phenotypes ranging from partial to complete transformations. A number of gain-of-function (GOF) mxp alleles have been isolated based on transformations of adult antennae and/or legs toward palps. Finally, we have characterized the mxp expression pattern in wild-type and mutant embryos. In normal embryos, mxp is expressed in the maxillary and labial segments, whereas ectopic expression is observed in some GOF variants. Although mxp and Pb display very similar expression patterns, pb null embryos develop normally. The mxp mutant larval phenotype in Tribolium is consistent with the hypothesis that an ancestral pb-like gene had an embryonic function that was lost in the lineage leading to Drosophila.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Development ◽  
2002 ◽  
Vol 129 (2) ◽  
pp. 539-549 ◽  
Author(s):  
Carrie A. Adelman ◽  
Subrata Chattopadhyay ◽  
James J. Bieker

Erythroid cell-specific gene regulation during terminal differentiation is controlled by transcriptional regulators, such as EKLF and GATA1, that themselves exhibit tissue-restricted expression patterns. Their early expression, already in evidence within multipotential hematopoietic cell lines, has made it difficult to determine what extracellular effectors and transduction mechanisms might be directing the onset of their own transcription during embryogenesis. To circumvent this problem, we have taken the novel approach of investigating whether the ability of embryonic stem (ES) cells to mimic early developmental patterns of cellular expression during embryoid body (EB) differentiation can address this issue. We first established conditions whereby EBs could form efficiently in the absence of serum. Surprisingly, in addition to mesoderm, these cells expressed hemangioblast and hematopoietic markers. However, they did not express the committed erythroid markers EKLF and GATA1, nor the terminally differentiated β-like globin markers. Using this system, we determined that EB differentiation in BMP4 was necessary and sufficient to recover EKLF and GATA1 expression and could be further stimulated by the inclusion of VEGF, SCF, erythropoietin and thyroid hormone. EBs were competent to respond to BMP4 only until day 4 of differentiation, which coincides with the normal onset of EKLF expression. The direct involvement of the BMP/Smad pathway in this induction process was further verified by showing that erythroid expression of a dominant negative BMP1B receptor or of the inhibitory Smad6 protein prevented induction of EKLF or GATA1 even in the presence of serum. Although Smad1, Smad5 and Smad8 are all expressed in the EBs, BMP4 induction of EKLF and GATA1 transcription is not immediate. These data implicate the BMP/Smad induction system as being a crucial pathway to direct the onset of EKLF and GATA1 expression during hematopoietic differentiation and demonstrate that EB differentiation can be manipulated to study induction of specific genes that are expressed early within a lineage.


Sign in / Sign up

Export Citation Format

Share Document