Syndesmos, a protein that interacts with the cytoplasmic domain of syndecan-4, mediates cell spreading and actin cytoskeletal organization

2000 ◽  
Vol 113 (2) ◽  
pp. 315-324 ◽  
Author(s):  
P.C. Baciu ◽  
S. Saoncella ◽  
S.H. Lee ◽  
F. Denhez ◽  
D. Leuthardt ◽  
...  

Syndecan-4 is a cell surface heparan sulfate proteoglycan which, in cooperation with integrins, transduces signals for the assembly of focal adhesions and actin stress fibers in cells plated on fibronectin. The regulation of these cellular events is proposed to occur, in part, through the interaction of the cytoplasmic domains of these transmembrane receptors with intracellular proteins. To identify potential intracellular proteins that interact with the cytoplasmic domain of syndecan-4, we carried out a yeast two-hybrid screen in which the cytoplasmic domain of syndecan-4 was used as bait. As a result of this screen, we have identified a novel cellular protein that interacts with the cytoplasmic domain of syndecan-4 but not with those of the other three syndecan family members. The interaction involves both the membrane proximal and variable central regions of the cytoplasmic domain. We have named this cDNA and encoded protein syndesmos. Syndesmos is ubiquitously expressed and can be myristylated. Consistent with its myristylation and syndecan-4 association, syndesmos colocalizes with syndecan-4 in the ventral plasma membranes of cells plated on fibronectin. When overexpressed in NIH 3T3 cells, syndesmos enhances cell spreading, actin stress fiber and focal contact formation in a serum-independent manner.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1061-1061
Author(s):  
Adam D. Munday ◽  
Jose A. Lopez

Abstract Abstract 1061 Platelet adhesion to sites of vascular injury is required for the arrest of bleeding. Initial platelet adhesion is mediated by binding of von Willebrand factor (VWF) to the platelet glycoprotein (GP) Ib-IX-V complex, leading to the activation of integrin α IIbβ3 and other molecules that mediate firm adhesion, spreading and thrombus formation. The GPIb-IX-V complex comprises 4 polypeptides: GPIbα, GPIbβ, GPIX and GPV, in a 2:4:2:1 stoichiometry. Only the first three polypeptides are required for full VWF binding function. GPIbα is a 610 amino acid polypeptide that binds every known complex ligand within its N-terminal 300 amino acids. The cytoplasmic domain comprises 96 amino acids and contains binding sites for filamin, PI 3-kinase and the scaffolding protein 14-3-3. The association of 14-3-3 with the GPIbα cytoplasmic domain regulates the affinity for VWF. Typically, 14-3-3 requires phosphoserine- or phosphothreonine-containing motifs to bind target proteins. One such motif is in the GPIbα cytoplasmic domain surrounding Ser609, which is phosphorylated and known to bind 14-3-3. Mutation of Ser609 to Ala abrogates 14-3-3 association, which has been proposed to reduce the ability of GPIbα to bind VWF. Platelet aggregation results in the dissociation of 14-3-3 from a subpopulation of GPIbα. Ser609 also becomes dephosphorylated upon platelet spreading. To dissect further the functional roles of 14-3-3 association with GPIbα, we expressed in Chinese hamster ovary (CHO) cells GPIb-IX complexes (GPIbα, GPIbβ, and GPIX) containing either wild type GPIbα, or GPIbα mutants S609A or S609E. In other proteins, mutation of Ser to Glu at the 14-3-3 binding site mimics phosphoserine, recapitulates 14-3-3 binding and often prevents 14-3-3 dissociation. We first assessed the ability of the WT and mutant GPIbα to associate with 14-3-3. As expected, we detected little 14-3-3 binding to GPIbα S609A. GPIbα S609E bound 14-3-3 to the same extent as did WT GPIbα, indicating that the Glu substitution was able to mimic Ser phosphorylation at residue 609. We then assessed the ability of the CHO cells to attach to and roll on VWF under flow over a wide range of shear rates. At 3.26 and 10 dyne/cm2 the α 609A and α 609E cells rolled twice as fast as the WT cells. Both CHO cells and platelets display a characteristic velocity nadir as shear rates increase. The α 609A and α 609E cell showed defective shear-enhanced adhesion; their slowest velocity was ∼3-fold faster than the WT cells. Because GPIbα is dephosphorylated upon platelet spreading, we also assessed the effect of the mutations on cell spreading on VWF. All three cell lines adhered similarly to VWF but a higher percentage of α 609A cells spread (67% vs 58% for WT and α 609E). Of the spread cells, the α S609E cells spread less well; their spread area was 15% less than the WT and α S609A cells. The morphology of the adherent, spread cells was dramatically different among the different cell lines. WT cells displayed a few filopodial extensions along with punctate phalloidin staining indicative of focal adhesions. In some cases the cells displayed stress fibers. The α S609A cells extended more and longer filopodia than the WT cells but had fewer focal adhesions and more stress fibers. The CHO α S609E cells extended thin filopodia that tended to be polarized at two sides of the cell body, and had fewer focal adhesions and no stress fibers. We also examined the effect of the mutations on localization of the GPIb-IX complex to lipid raft membrane microdomains, which is required for platelet adhesion to VWF. Raft GPIbα was reduced by 40% in the S609A cells but increased 1.6-fold in the S609E cells. In summary, lack of 14-3-3 association decreased raft localization of the complex, reduced shear-induced cell adhesion, but increased cell spreading. Stable 14-3-3 association increased raft localization, but decreased shear-induced cell adhesion and decreased the ability of cells to fully spread. Together, our results demonstrate that regulated 14-3-3 association mediated by the phosphorylation status of S609 is required for coordinated adhesion, and cell spreading. Together, our results demonstrate that the functions of the GPIb-IX complex are regulated by the ability of GPIbα Ser609 to both bind and release 14-3-3 and suggest that it is not 14-3-3 binding per se that regulates GPIbα function. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 122 (1) ◽  
pp. 223-233 ◽  
Author(s):  
J Ylänne ◽  
Y Chen ◽  
TE O'Toole ◽  
JC Loftus ◽  
Y Takada ◽  
...  

Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.


2018 ◽  
Author(s):  
Delia Bucher ◽  
Markus Mukenhirn ◽  
Kem A. Sochacki ◽  
Veronika Saharuka ◽  
Christian Huck ◽  
...  

AbstractClathrin is a unique scaffold protein, which forms polyhedral lattices with flat and curved morphology. The function of curved clathrin-coated pits in forming endocytic structures is well studied. On the contrary, the role of large flat clathrin arrays, called clathrin-coated plaques, remains ambiguous. Previous studies suggested an involvement of plaques in cell adhesion. However, the molecular origin leading to their formation and their precise functions remain to be determined. Here, we study the origin and function of clathrin-coated plaques during cell migration. We revealed that plaque formation is intimately linked to extracellular matrix (ECM) modification by focal adhesions (FAs). We show that in migrating cells, FAs digest the ECM creating extracellular topographical cues that dictate the future location of clathrin-coated plaques. We identify Eps15 and Eps15R as key regulators for the formation of clathrin-coated plaques at locally remodelled ECM sites. Using a genetic silencing approach to abrogate plaque formation and 3D-micropatterns to spatially control the location of clathrin-coated plaques, we could directly correlate cell migration directionality with the formation of clathrin-coated plaques and their ability to recognize extracellular topographical cues. We here define the molecular mechanism regulating the functional interplay between FAs and plaques and propose that clathrin-coated plaques act as regulators of cell migration promoting contact guidance-mediated collective migration in a cell-to-cell contact independent manner.


2001 ◽  
Vol 12 (10) ◽  
pp. 3214-3225 ◽  
Author(s):  
Bradford A. Young ◽  
Yasuyuki Taooka ◽  
Shouchun Liu ◽  
Karen J. Askins ◽  
Yasuyuki Yokosaki ◽  
...  

The integrin α9 subunit forms a single heterodimer, α9β1. The α9 subunit is most closely related to the α4 subunit, and like α4 integrins, α9β1 plays an important role in leukocyte migration. The α4 cytoplasmic domain preferentially enhances cell migration and inhibits cell spreading, effects that depend on interaction with the adaptor protein, paxillin. To determine whether the α9 cytoplasmic domain has similar effects, a series of chimeric and deleted α9 constructs were expressed in Chinese hamster ovary cells and tested for their effects on migration and spreading on an α9β1-specific ligand. Like α4, the α9 cytoplasmic domain enhanced cell migration and inhibited cell spreading. Paxillin also specifically bound the α9 cytoplasmic domain and to a similar level as α4. In paxillin −/− cells, α9 failed to inhibit cell spreading as expected but surprisingly still enhanced cell migration. Further, mutations that abolished the α9-paxillin interaction prevented α9 from inhibiting cell spreading but had no effect on α9-dependent cell migration. These findings suggest that the mechanisms by which the cytoplasmic domains of integrin α subunits enhance migration and inhibit cell spreading are distinct and that the α9 and α4 cytoplasmic domains, despite sequence and functional similarities, enhance cell migration by different intracellular signaling pathways.


1999 ◽  
Vol 10 (2) ◽  
pp. 373-391 ◽  
Author(s):  
Anna Cattelino ◽  
Chiara Albertinazzi ◽  
Mario Bossi ◽  
David R. Critchley ◽  
Ivan de Curtis

Assembly and modulation of focal adhesions during dynamic adhesive processes are poorly understood. We describe here the use of ventral plasma membranes from adherent fibroblasts to explore mechanisms regulating integrin distribution and function in a system that preserves the integration of these receptors into the plasma membrane. We find that partial disruption of the cellular organization responsible for the maintenance of organized adhesive sites allows modulation of integrin distribution by divalent cations. High Ca2+ concentrations induce quasi-reversible diffusion of β1 integrins out of focal adhesions, whereas low Ca2+ concentrations induce irreversible recruitment of β1 receptors along extracellular matrix fibrils, as shown by immunofluorescence and electron microscopy. Both effects are independent from the presence of actin stress fibers in this system. Experiments with cells expressing truncated β1 receptors show that the cytoplasmic portion of β1 is required for low Ca2+-induced recruitment of the receptors to matrix fibrils. Analysis with function-modulating antibodies indicates that divalent cation-mediated receptor distribution within the membrane correlates with changes in the functional state of the receptors. Moreover, reconstitution experiments show that purified α-actinin colocalizes and redistributes with β1 receptors on ventral plasma membranes depleted of actin, implicating binding of α-actinin to the receptors. Finally, we found that recruitment of exogenous actin is specifically restricted to focal adhesions under conditions in which new actin polymerization is inhibited. Our data show that the described system can be exploited to investigate the mechanisms of integrin function in an experimental setup that permits receptor redistribution. The possibility to uncouple, under cell-free conditions, events involved in focal adhesion and actin cytoskeleton assembly should facilitate the comprehension of the underlying molecular mechanisms.


1995 ◽  
Vol 6 (6) ◽  
pp. 661-674 ◽  
Author(s):  
P D Kassner ◽  
R Alon ◽  
T A Springer ◽  
M E Hemler

For functional studies of the integrin alpha 4 cytoplasmic domain, we have expressed the following in K562 and Chinese hamster ovary (CHO) cells: 1) wild-type alpha 4 (called X4C4), 2) two chimeric forms of alpha 4 (called X4C2 and X4C5) that contain the cytoplasmic domains of alpha 2 and alpha 5, respectively, and 3) alpha 4 with no cytoplasmic domain (X4C0). Cytoplasmic domain exchange had no effect on VLA-4-dependent static cell adhesion or tethering to VCAM-1 in conditions of shear flow. However, the presence of the alpha 2 or alpha 5 tails markedly enhanced VLA-4-dependent K562 cells spreading (X4C2 > X4C5 > X4C4 > X4C0), increased localization of VLA-4 into focal adhesion-like complexes in CHO cells (X4C2 > X4C5 > X4C4), and strengthened CHO and K562 cell resistance to detachment from VCAM-1 in conditions of shear flow (X4C2 > X4C5 > X4C4 > X4C0). Conversely, the alpha 4 tail supported greater VLA-4-dependent haptotactic and chemotactic cell migration. In the absence of any alpha tail (i.e., X4C0), robust focal adhesions were observed, even though cell spreading and adhesion strengthening were minimal. Thus, such focal adhesions may have relatively little functional importance, and should not be compared with focal adhesions formed when alpha tails are present. Together, these results indicate that all three alpha-chain tails exert defined positive effects (compared with no tail at all), but suggest that the alpha 4 cytoplasmic domain may be specialized to engage in weaker cytoskeletal interactions, leading to diminished focal adhesion formation, cell spreading, and adhesion strengthening, while augmenting cell migration and facilitating rolling under shear flow. These properties of the alpha 4 tail are consistent with the role of alpha 4 integrins on highly motile lymphocytes, monocytes, and eosinophils.


1997 ◽  
Vol 272 (5) ◽  
pp. F602-F609 ◽  
Author(s):  
J. Van Adelsberg ◽  
S. Chamberlain ◽  
V. D'Agati

Mutations in PKD1 cause autosomal dominant polycystic kidney disease (ADPKD), a common genetic disease in which cysts form from kidney tubules. The predicted product of this gene is a novel protein with cell-adhesive and membrane-spanning domains. To test the hypothesis that polycystin, the product of the PKD1 gene, is a cell adhesion molecule, we raised antibodies against peptides derived from the unduplicated, membrane-spanning portion of the predicted amino acid sequence. These antibodies recognized membrane-associated polypeptides of 485 and 245 kDa in human fetal kidney homogenates. Expression was greater in fetal than adult kidney by both Western blot analysis and immunofluorescence. In fetal kidney, polycystin was localized to the plasma membranes of ureteric bud and comma and S-shaped bodies. However, in more mature tubules in fetal kidney, in adult kidney, and in polycystic kidney, the majority of polycystin staining was intracellular. The temporal and spatial regulation of polycystin expression during renal development lead us to speculate that polycystin may play a role in nephrogenesis.


2005 ◽  
Vol 303 (2) ◽  
pp. 218-228 ◽  
Author(s):  
Donna M. Peters ◽  
Kathleen Herbert ◽  
Brenda Biddick ◽  
Jennifer A. Peterson

Sign in / Sign up

Export Citation Format

Share Document