scholarly journals Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions

1993 ◽  
Vol 122 (1) ◽  
pp. 223-233 ◽  
Author(s):  
J Ylänne ◽  
Y Chen ◽  
TE O'Toole ◽  
JC Loftus ◽  
Y Takada ◽  
...  

Integrin-mediated cell adhesion often results in cell spreading and the formation of focal adhesions. We exploited the capacity of recombinant human alpha IIb beta 3 integrin to endow heterologous cells with the ability to adhere and spread on fibrinogen to study the role of integrin cytoplasmic domains in initiation of cell spreading and focal adhesions. The same constructs were also used to analyze the role of the cytoplasmic domains in maintenance of the fidelity of the integrin repertoire at focal adhesions. Truncation mutants of the cytoplasmic domain of alpha IIb did not interfere with the ability of alpha IIb beta 3 to initiate cell spreading and form focal adhesions. Nevertheless, deletion of the alpha IIb cytoplasmic domain allowed indiscriminate recruitment of alpha IIb beta 3 to focal adhesions formed by other integrins. Truncation of the beta 3 subunit cytoplasmic domain abolished cell spreading mediated by alpha IIb beta 3 and also abrogated recruitment of alpha IIb beta 3 to focal adhesions. This truncation also dramatically impaired the ability of alpha IIb beta 3 to mediate the contraction of fibrin gels. In contrast, the beta 3 subunit cytoplasmic truncation did not reduce the fibrinogen binding affinity of alpha IIb beta 3. Thus, the integrin beta 3 subunit cytoplasmic domain is necessary and sufficient for initiation of cell spreading and focal adhesion formation. Further, the beta 3 cytoplasmic domain is required for the transmission of intracellular contractile forces to fibrin gels. The alpha subunit cytoplasmic domain maintains the fidelity of recruitment of the integrins to focal adhesions and thus regulates their repertoire of integrins.


1995 ◽  
Vol 6 (6) ◽  
pp. 661-674 ◽  
Author(s):  
P D Kassner ◽  
R Alon ◽  
T A Springer ◽  
M E Hemler

For functional studies of the integrin alpha 4 cytoplasmic domain, we have expressed the following in K562 and Chinese hamster ovary (CHO) cells: 1) wild-type alpha 4 (called X4C4), 2) two chimeric forms of alpha 4 (called X4C2 and X4C5) that contain the cytoplasmic domains of alpha 2 and alpha 5, respectively, and 3) alpha 4 with no cytoplasmic domain (X4C0). Cytoplasmic domain exchange had no effect on VLA-4-dependent static cell adhesion or tethering to VCAM-1 in conditions of shear flow. However, the presence of the alpha 2 or alpha 5 tails markedly enhanced VLA-4-dependent K562 cells spreading (X4C2 > X4C5 > X4C4 > X4C0), increased localization of VLA-4 into focal adhesion-like complexes in CHO cells (X4C2 > X4C5 > X4C4), and strengthened CHO and K562 cell resistance to detachment from VCAM-1 in conditions of shear flow (X4C2 > X4C5 > X4C4 > X4C0). Conversely, the alpha 4 tail supported greater VLA-4-dependent haptotactic and chemotactic cell migration. In the absence of any alpha tail (i.e., X4C0), robust focal adhesions were observed, even though cell spreading and adhesion strengthening were minimal. Thus, such focal adhesions may have relatively little functional importance, and should not be compared with focal adhesions formed when alpha tails are present. Together, these results indicate that all three alpha-chain tails exert defined positive effects (compared with no tail at all), but suggest that the alpha 4 cytoplasmic domain may be specialized to engage in weaker cytoskeletal interactions, leading to diminished focal adhesion formation, cell spreading, and adhesion strengthening, while augmenting cell migration and facilitating rolling under shear flow. These properties of the alpha 4 tail are consistent with the role of alpha 4 integrins on highly motile lymphocytes, monocytes, and eosinophils.



1999 ◽  
Vol 112 (20) ◽  
pp. 3421-3431 ◽  
Author(s):  
R.L. Longley ◽  
A. Woods ◽  
A. Fleetwood ◽  
G.J. Cowling ◽  
J.T. Gallagher ◽  
...  

Syndecan-4 is a widely expressed transmembrane heparan sulfate proteoglycan which localizes to focal adhesions. Previous studies showed that the syndecan-4 cytoplasmic domain can associate with and potentiate the activity of protein kinase C, which is required for focal adhesion formation. To examine further the role of syndecan-4 in cell adhesion, we expressed syndecan-4 cDNA constructs in CHO-K1 cells. Syndecan-2 transfection was used to confirm effects seen were specific for syndecan-4. Cells overexpressing full length syndecan-4 core protein exhibited a more flattened, fibroblastic morphology, with increased focal adhesion formation and decreased cell motility. Expression of a syndecan-4 core protein with either a partial or complete deletion of the cytoplasmic domain or of an antisense construct led to markedly decreased spreading and focal adhesion formation, a more epithelioid morphology, and decreased motility. Overexpression of syndecan-2 changed the adhesive phenotype, but did not markedly alter focal adhesion and microfilament bundle formation. The data suggest that syndecan-4 is a regulator of focal adhesion and stress fiber formation, and influences both morphology and migration.



1995 ◽  
Vol 181 (1) ◽  
pp. 315-326 ◽  
Author(s):  
K Peter ◽  
T E O'Toole

The integrin alpha L beta 2 (leukocyte function-associated molecule 1, CD11a/CD18) mediates activation-dependent adhesion of leukocytes. The cytoplasmic domains of alpha L beta 2 have been demonstrated to modulate adhesiveness of alpha L beta 2. Affinity changes of alpha L beta 2 for its ligand or postreceptor events can be responsible for this modulation of adhesiveness. To investigate the possible role of the alpha L beta 2 cytoplasmic domains in postreceptor events we constructed cDNA encoding chimeric proteins with intracellular alpha L beta 2 domains, which are responsible for alpha L beta 2 specific intracellular interactions, and extracellular alpha IIIb beta 3 (GP IIb/IIIa) domains, which allow the assessment of the receptor affinity state. The cDNA was stably transfected in Chinese hamster ovary cells and chimeric heterodimer formation proven by immunoprecipitations and flow cytometry. The chimeric receptors mediate adhesion to immobilized fibrinogen, and this adhesion is increased by phorbol myristate acetate and abolished by cytochalasin D. However, neither treatment affects the affinity state of the chimeric receptor, suggesting involvement of the cytoskeleton in the regulation of alpha L beta 2 mediated cell adhesion. To exclude the possibility of postoccupancy affinity changes of the chimeric receptors, we locked the receptors into a high affinity state by creating a deletion variant. The region deleted (VGFFK) is highly conserved in integrin alpha subunit cytoplasmic domains. Cotransfection of this deletion variant with a beta subunit truncation (beta 3 delta 724) and a triple mutation at 758-760 (TTT to AAA) of beta 2 abolishes adhesion without changing the affinity state. A single mutation (TTT to TAT) reduces adhesion by half without affinity change. Scanning electron microscopy reveals impaired spreading of these truncated/mutated chimeras. Immunofluorescence microscopy demonstrates a correlation between impaired adhesion and a decrease in the ability to form focal adhesions and to organize the cytoskeleton into stress fibers. These results describe the integrin/cytoskeleton interaction, the organization of the cytoskeleton, and cell spreading as postreceptor events modulating alpha L beta 2 cytoplasmic domain mediated cell adhesion. Furthermore, we demonstrate that the cytoplasmic domain of the beta 2 subunit, and within it the TTT region, are required for these postreceptor events. Additionally, we present a new approach, using deletion variants to lock integrins in a high affinity state without interfering with the investigated integrin/cytoskeleton interaction. This approach may be generally useful to investigate the role of postreceptor events in integrin-mediated cell adhesion and migration.



2000 ◽  
Vol 113 (2) ◽  
pp. 315-324 ◽  
Author(s):  
P.C. Baciu ◽  
S. Saoncella ◽  
S.H. Lee ◽  
F. Denhez ◽  
D. Leuthardt ◽  
...  

Syndecan-4 is a cell surface heparan sulfate proteoglycan which, in cooperation with integrins, transduces signals for the assembly of focal adhesions and actin stress fibers in cells plated on fibronectin. The regulation of these cellular events is proposed to occur, in part, through the interaction of the cytoplasmic domains of these transmembrane receptors with intracellular proteins. To identify potential intracellular proteins that interact with the cytoplasmic domain of syndecan-4, we carried out a yeast two-hybrid screen in which the cytoplasmic domain of syndecan-4 was used as bait. As a result of this screen, we have identified a novel cellular protein that interacts with the cytoplasmic domain of syndecan-4 but not with those of the other three syndecan family members. The interaction involves both the membrane proximal and variable central regions of the cytoplasmic domain. We have named this cDNA and encoded protein syndesmos. Syndesmos is ubiquitously expressed and can be myristylated. Consistent with its myristylation and syndecan-4 association, syndesmos colocalizes with syndecan-4 in the ventral plasma membranes of cells plated on fibronectin. When overexpressed in NIH 3T3 cells, syndesmos enhances cell spreading, actin stress fiber and focal contact formation in a serum-independent manner.



1992 ◽  
Vol 102 (4) ◽  
pp. 753-762
Author(s):  
G.H. Nuckolls ◽  
L.H. Romer ◽  
K. Burridge

Talin is believed to be one of the key proteins involved in linking actin filaments to extracellular matrix receptors in focal adhesions. Our strategy for studying the function of talin has been to inactivate talin in living fibroblasts in tissue culture through the microinjection of affinity-purified, polyclonal anti-talin antibodies. The effect of the injected anti-talin antibodies on cell spreading was found to depend on how recently the cells had been plated. Cells that were in the process of spreading on a fibronectin substratum, and which had newly developed focal adhesions, were induced to round up and to disassemble many of the adhesions. However, if fibroblasts were allowed to spread completely before they were microinjected with the anti-talin antibody, focal adhesions remained intact and the flat morphology of the cells was unaffected. The percentage of cells that were able to maintain a spread morphology despite the injection of anti-talin antibodies increased during the first few hours after plating on fibronectin substrata. Fibroblasts that were allowed to spread completely before microinjection with the anti-talin antibody retained both intact focal adhesions and a flat, well-spread morphology, but failed to migrate effectively. Our experiments do not directly address the role of talin in mature focal adhesions, but they indicate that talin is essential for the spreading and migration of fibroblasts on fibronectin as well as for the development and initial maintenance of focal adhesions on this substratum.



Nano LIFE ◽  
2014 ◽  
Vol 04 (01) ◽  
pp. 1450002 ◽  
Author(s):  
Qingsu Cheng ◽  
Greg M. Harris ◽  
Marc-Olivier Blais ◽  
Katy Rutledge ◽  
Ehsan Jabbarzadeh

Stem cells offer a promising tool in tissue engineering strategies, as their differentiated derivatives can be used to reconstruct most biological tissues. These approaches rely on controlling the biophysical cues that tune the ultimate fate of cells. In this context, significant effort has gone to parse out the role of conflicting matrix-elicited signals (e.g., topography and elasticity) in regulation of macroscopic characteristics of cells (e.g., shape and polarity). A critical hurdle, however, lies in our inability to recapitulate the nanoscale spatiotemporal pattern of these signals. The study presented in this manuscript took an initial step to overcome this challenge by developing a carbon nanotube (CNT)-based substrate for nanoresolution control of focal adhesion formation and cell alignment. The utility of this system was studied using human umbilical vascular endothelial cells (HUVECs) and human embryonic stem cells (hESCs) at a single cell level. Our results demonstrated the ability to control cell orientation by merely controlling the alignment of focal adhesions at a nanoscale size. Our long-term vision is to use these nanoengineered substrates to mimic cell orientation in earlier development and explore the role of polarity in asymmetric division and lineage specification of dividing cells.



Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1061-1061
Author(s):  
Adam D. Munday ◽  
Jose A. Lopez

Abstract Abstract 1061 Platelet adhesion to sites of vascular injury is required for the arrest of bleeding. Initial platelet adhesion is mediated by binding of von Willebrand factor (VWF) to the platelet glycoprotein (GP) Ib-IX-V complex, leading to the activation of integrin α IIbβ3 and other molecules that mediate firm adhesion, spreading and thrombus formation. The GPIb-IX-V complex comprises 4 polypeptides: GPIbα, GPIbβ, GPIX and GPV, in a 2:4:2:1 stoichiometry. Only the first three polypeptides are required for full VWF binding function. GPIbα is a 610 amino acid polypeptide that binds every known complex ligand within its N-terminal 300 amino acids. The cytoplasmic domain comprises 96 amino acids and contains binding sites for filamin, PI 3-kinase and the scaffolding protein 14-3-3. The association of 14-3-3 with the GPIbα cytoplasmic domain regulates the affinity for VWF. Typically, 14-3-3 requires phosphoserine- or phosphothreonine-containing motifs to bind target proteins. One such motif is in the GPIbα cytoplasmic domain surrounding Ser609, which is phosphorylated and known to bind 14-3-3. Mutation of Ser609 to Ala abrogates 14-3-3 association, which has been proposed to reduce the ability of GPIbα to bind VWF. Platelet aggregation results in the dissociation of 14-3-3 from a subpopulation of GPIbα. Ser609 also becomes dephosphorylated upon platelet spreading. To dissect further the functional roles of 14-3-3 association with GPIbα, we expressed in Chinese hamster ovary (CHO) cells GPIb-IX complexes (GPIbα, GPIbβ, and GPIX) containing either wild type GPIbα, or GPIbα mutants S609A or S609E. In other proteins, mutation of Ser to Glu at the 14-3-3 binding site mimics phosphoserine, recapitulates 14-3-3 binding and often prevents 14-3-3 dissociation. We first assessed the ability of the WT and mutant GPIbα to associate with 14-3-3. As expected, we detected little 14-3-3 binding to GPIbα S609A. GPIbα S609E bound 14-3-3 to the same extent as did WT GPIbα, indicating that the Glu substitution was able to mimic Ser phosphorylation at residue 609. We then assessed the ability of the CHO cells to attach to and roll on VWF under flow over a wide range of shear rates. At 3.26 and 10 dyne/cm2 the α 609A and α 609E cells rolled twice as fast as the WT cells. Both CHO cells and platelets display a characteristic velocity nadir as shear rates increase. The α 609A and α 609E cell showed defective shear-enhanced adhesion; their slowest velocity was ∼3-fold faster than the WT cells. Because GPIbα is dephosphorylated upon platelet spreading, we also assessed the effect of the mutations on cell spreading on VWF. All three cell lines adhered similarly to VWF but a higher percentage of α 609A cells spread (67% vs 58% for WT and α 609E). Of the spread cells, the α S609E cells spread less well; their spread area was 15% less than the WT and α S609A cells. The morphology of the adherent, spread cells was dramatically different among the different cell lines. WT cells displayed a few filopodial extensions along with punctate phalloidin staining indicative of focal adhesions. In some cases the cells displayed stress fibers. The α S609A cells extended more and longer filopodia than the WT cells but had fewer focal adhesions and more stress fibers. The CHO α S609E cells extended thin filopodia that tended to be polarized at two sides of the cell body, and had fewer focal adhesions and no stress fibers. We also examined the effect of the mutations on localization of the GPIb-IX complex to lipid raft membrane microdomains, which is required for platelet adhesion to VWF. Raft GPIbα was reduced by 40% in the S609A cells but increased 1.6-fold in the S609E cells. In summary, lack of 14-3-3 association decreased raft localization of the complex, reduced shear-induced cell adhesion, but increased cell spreading. Stable 14-3-3 association increased raft localization, but decreased shear-induced cell adhesion and decreased the ability of cells to fully spread. Together, our results demonstrate that regulated 14-3-3 association mediated by the phosphorylation status of S609 is required for coordinated adhesion, and cell spreading. Together, our results demonstrate that the functions of the GPIb-IX complex are regulated by the ability of GPIbα Ser609 to both bind and release 14-3-3 and suggest that it is not 14-3-3 binding per se that regulates GPIbα function. Disclosures: No relevant conflicts of interest to declare.



2000 ◽  
Vol 74 (8) ◽  
pp. 3505-3516 ◽  
Author(s):  
R. S. Tirabassi ◽  
L. W. Enquist

ABSTRACT The glycoproteins I and E of pseudorabies virus are important mediators of cell-to-cell spread and virulence in all animal models tested. Although these two proteins form a complex with one another, ascribing any function to the individual proteins has been difficult. We have shown previously, using nonsense mutations, that the N-terminal ectodomain of the gE protein is sufficient for gE-mediated transsynaptic spread whereas the cytoplasmic domain of the protein is required for full expression of virulence. These same studies demonstrated that the cytoplasmic domain of gE is also required for endocytosis of the protein. In this report, we describe the construction of viruses with nonsense mutations in gI that allowed us to determine the contributions of the gI cytoplasmic domain to protein expression as well as virus neuroinvasion and virulence after infection of the rat eye. We also constructed double mutants with nonsense mutations in both gE and gI so that the contributions of both the gE and gI cytoplasmic domains could be determined. We observed that the gI cytoplasmic domain is required for efficient posttranslational modification of the gI protein. The gE cytoplasmic domain has no effect on gE posttranslational glycosylation. In addition, we found that infection of all gE-gI-dependent anterograde circuits projecting from the rat retina requires both ectodomains and at least one of the cytoplasmic domains of the proteins. The gI cytoplasmic domain promotes transsynaptic spread of virus better than the gE cytoplasmic domain. Interestingly, both gE and gI cytoplasmic tails are required for virulence; lack of either one or both results in an attenuated infection. These data suggest that gE and gI play differential roles in mediating directional neuroinvasion of the rat; however, the gE and gI cytoplasmic domains most likely function together to promote virulence.



2017 ◽  
Author(s):  
Kazuo Katoh

Specific regulation and activation of focal adhesion kinase (FAK) are thought to be important for focal adhesion formation, and activation of Rho-kinase has been suggested to play a role in determining the effects of FAK on the formation of stress fibers and focal adhesions. To clarify the role of FAK in stress fiber formation and focal adhesion organization, we examined the formation of new stress fibers and focal adhesions by activation of Rho-kinase in FAK knockout (FAK–/–) fibroblasts. FAK–/– cells were elliptical in shape, and showed reduced numbers of stress fibers and focal adhesions in the central part of the cells along with large focal adhesions in the peripheral regions. Activation of Rho-kinase in FAK–/– cells transiently increased the actin filaments in the cell center, but these did not form typical thick stress fibers. Moreover, only plaque-like structures as the origins of newly formed focal adhesions were observed in the center of the cell. Furthermore, introduction of an exogenous GFP-labeled FAK gene into FAK–/– cells resulted in increased numbers of stress fibers and focal adhesions in the center of the cells, which showed typical fibroblast morphology. These results indicated that FAK plays an important role in the formation of stress fibers and focal adhesions as well as in regulation of cell shape and morphology with the activation of Rho-kinase.



Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 340-340
Author(s):  
Binggang Xiang ◽  
Guoying Zhang ◽  
Shaojing Ye ◽  
Cai Huang ◽  
Jun Liu ◽  
...  

Abstract Integrins play fundamental roles in many biological processes such as development, immunity, cancer, wound healing, hemostasis, and thrombosis. Integrin activation is essential for cell adhesion, spreading, survival, proliferation, and migration. Integrins are heterodimeric transmembrane glycoproteins composed of a and b subunits. The function of integrins is modulated by bi-directional transmembrane signaling: inside-out and outside-in signaling, which are mediated through the interactions between integrin a or b subunit cytoplasmic tails and intracellular proteins and can be regulated by many different biochemical signaling pathways. αIIbβ3 is a major integrin expressed in megakaryocytes and platelets. Antagonists of αIIbβ3 are potent anti-thrombotic drugs and new inhibitors targeting αIIbβ3 are under preclinical testing or large patient trials to treat acute coronary syndromes. Integrin αIIbβ3 activation involves binding of proteins, including talin, kindlins, Src kinase, and Gα13 to the cytoplasmic domain of its β subunit. To gain insight into αIIbβ3signaling and to identify new proteins that regulate αIIbβ3 activation, agarose beads conjugated with glutathione S-transferase (GST)-β3 integrin cytoplasmic domain fusion protein (GST-β3CD) or GST-αIIb integrin cytoplasmic domain fusion protein (GST-αIIbCD) were incubated with human platelet lysates. Proteins pulled down by the GST-β3CD or GST-αIIbCD beads were subjected to mass spectrometric analysis. We found that the GST-β3CD but not the GST-αIIbCD beads specifically pulled down a previously unreported protein, the vacuolar protein sorting-associated protein 33B (VPS33B), encoded by the VPS33B gene. To verify that VPS33B is in a complex with αIIbβ3, we infected Chinese hamster ovary (CHO) cells stably expressing αIIbβ3 (A5 cells) with an adenovirus containing FLAG epitope-tagged human VPS33B cDNA. Cells were allowed to adhere and spread on fibrinogen. FLAG-VPS33B exhibited a significant intracellular colocalization with aIIbb3. Immunoblotting analysis revealed a specific association of b3 with precipitated FLAG-VPS33B. The specific interaction was also confirmed by reciprocal immunoprecipitation using a specific β3antibody. Furthermore, in an in vitro binding assay, we were able to pull down VPS33B from the lysates of CHO cells overexpressing VPS33B by the GST-β3CD beads. The interaction appears to be direct, since we were also able to pull down purified FLAG-VPS33B with GST-β3CD and GST-β1CD proteins. The pulldown assay showed that the β3 fragment spanning residues 716~730 bound efficiently to FLAG-VPS33B. In contrast, the fragments containing either residues 729~762 or residues 744~762 fragments failed to do the same. More importantly, using the rabbit polyclonal antibody against VPS33B, we were able to coimmunoprecipitate endogenous b3 subunit with VPS33B from human platelet lysate. Thus, we identified a novel binding protein of integrin β3. Next, we investigated the role of VPS33B in integrin activation using a recombinant integrin activation model of CHO cells. Overexpression of VPS33B in CHO cells expressing αIIbβ3 (A5 cells) markedly potentiated cell spreading on fibrinogen and F-actin formation. To establish a role of VPS33B in integrin activation in platelets, we created a mouse model with megakaryocyte- and platelet-specific deletion of VPS33B. Platelets lacking VPS33B were defective in spreading on fibrinogen. VPS33B-/- platelets failed to support clot retraction. On the other hand, thrombin-induced fibrinogen binding to platelets and platelet aggregation were not affected by the loss of VPS33B. Collectively, these results demonstrate an essential role of VPS33B in αIIbβ3 outside-in signaling but is not requried for integrin inside-out signaling. We further demonstrate that VPS33B promotes αIIbβ3 outside-in signaling through RhoA and Rac1 activation, leading to clot retraction and cell spreading, respectively. Therefore, our results for the first time establish vesicle trafficking proteins as an important novel class of modifiers of integrin function in platelets and cells. Disclosures No relevant conflicts of interest to declare.



Sign in / Sign up

Export Citation Format

Share Document