scholarly journals Preferential association of syntaxin 8 with the early endosome

2000 ◽  
Vol 113 (6) ◽  
pp. 997-1008 ◽  
Author(s):  
V.N. Subramaniam ◽  
E. Loh ◽  
H. Horstmann ◽  
A. Habermann ◽  
Y. Xu ◽  
...  

Members of the syntaxin family play a fundamental role in vesicle docking and fusion of diverse transport events. We have molecularly characterized syntaxin 8, a novel member of the syntaxin family. The nucleotide sequence of cloned rat cDNA predicts a polypeptide of 236 residues with a carboxyl-terminal 18-residue hydrophobic domain that may function as a membrane anchor. Characteristic of syntaxins, syntaxin 8 also contain regions that have the potential to form coiled-coil structures. Among the known syntaxins, syntaxin 8 is most homologous to syntaxin 6 which is predominantly associated with the trans-Golgi network (TGN). The syntaxin 8 transcript is detected in all rat tissues examined by northern blot. Antibodies against recombinant syntaxin 8 recognize a 27 kDa protein that is enriched in membrane fractions containing the Golgi apparatus and the endosomal/lysosomal compartments. Syntaxin 8 in membrane extract could be incorporated into a 20S protein complex in a way that is dependent on the soluble N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein ((alpha)-SNAP), suggesting that syntaxin 8 is indeed a SNAP receptor (SNARE). Indirect immunofluorescence microscopy reveals that the majority of syntaxin 8 is localized to the early endosome marked by Rab5. This is corroborated by immunogold labeling experiments showing enrichment of syntaxin 8 in the early endosome and its co-labeling with Rab5.

2003 ◽  
Vol 14 (3) ◽  
pp. 973-986 ◽  
Author(s):  
Annette M. Shewan ◽  
Ellen M. van Dam ◽  
Sally Martin ◽  
Tang Bor Luen ◽  
Wanjin Hong ◽  
...  

Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen 1 protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-solubleN-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of thetrans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.


2011 ◽  
Vol 22 (21) ◽  
pp. 4134-4149 ◽  
Author(s):  
Gayoung A. Han ◽  
Nancy T. Malintan ◽  
Ner Mu Nar Saw ◽  
Lijun Li ◽  
Liping Han ◽  
...  

Munc18-1 plays pleiotropic roles in neurosecretion by acting as 1) a molecular chaperone of syntaxin-1, 2) a mediator of dense-core vesicle docking, and 3) a priming factor for soluble N-ethylmaleimide–sensitive factor attachment protein receptor–mediated membrane fusion. However, how these functions are executed and whether they are correlated remains unclear. Here we analyzed the role of the domain-1 cleft of Munc18-1 by measuring the abilities of various mutants (D34N, D34N/M38V, K46E, E59K, K46E/E59K, K63E, and E66A) to bind and chaperone syntaxin-1 and to restore the docking and secretion of dense-core vesicles in Munc18-1/-2 double-knockdown cells. We identified striking correlations between the abilities of these mutants to bind and chaperone syntaxin-1 with their ability to restore vesicle docking and secretion. These results suggest that the domain-1 cleft of Munc18-1 is essential for binding to syntaxin-1 and thereby critical for its chaperoning, docking, and secretory functions. Our results demonstrate that the effect of the alleged priming mutants (E59K, D34N/M38V) on exocytosis can largely be explained by their reduced syntaxin-1–chaperoning functions. Finally, our data suggest that the intracellular expression and distribution of syntaxin-1 determines the level of dense-core vesicle docking.


2000 ◽  
Vol 11 (7) ◽  
pp. 2429-2443 ◽  
Author(s):  
Michael J. Conboy ◽  
Martha S. Cyert

We have characterized LUV1/RKI1/TCS3/VPS54, a novel yeast gene required to maintain normal vacuolar morphology. Theluv1 mutant was identified in a genetic screen for mutants requiring the phosphatase calcineurin for vegetative growth.luv1 mutants lack a morphologically intact vacuole and instead accumulate small vesicles that are acidified and contain the vacuolar proteins alkaline phosphatase and carboxypeptidase Y and the vacuolar membrane H+-ATPase. Endocytosis appears qualitatively normal in luv1 mutants, but some portion (28%) of carboxypeptidase Y is secreted. luv1 mutants are sensitive to several ions (Zn2+, Mn2+, and Cd2+) and to pH extremes. These mutants are also sensitive to hygromycin B, caffeine, and FK506, a specific inhibitor of calcineurin. Some vacuolar protein-sorting mutants display similar drug and ion sensitivities, including sensitivity to FK506. Luv1p sediments at 100,000 × g and can be solubilized by salt or carbonate, indicating that it is a peripheral membrane protein. A Green Fluorescent Protein–Luv1 fusion protein colocalizes with the dye FM 4-64 at the endosome, and hemagglutinin-tagged Luv1p colocalizes with the trans-Golgi network/endosomal protease Kex2p. Computer analysis predicts a short coiled-coil domain in Luv1p. We propose that this protein maintains traffic through or the integrity of the early endosome and that this function is required for proper vacuolar morphology.


2004 ◽  
Vol 15 (3) ◽  
pp. 1197-1210 ◽  
Author(s):  
Simon C. W. Richardson ◽  
Stanley C. Winistorfer ◽  
Viviane Poupon ◽  
J. Paul Luzio ◽  
Robert C. Piper

In Saccharomyces cerevisiae, the class C vacuole protein sorting (Vps) proteins, together with Vam2p/Vps41p and Vam6p/Vps39p, form a complex that interacts with soluble N-ethylmaleimide-sensitive factor attachment protein receptor and Rab proteins to “tether” vacuolar membranes before fusion. To determine a role for the corresponding mammalian orthologues, we examined the function, localization, and protein interactions of endogenous mVps11, mVps16, mVps18, mVam2p, and mVam6. We found a significant proportion of these proteins localized to early endosome antigen-1 and transferrin receptor-positive early endosomes in Vero, normal rat kidney, and Chinese hamster ovary cells. Immunoprecipitation experiments showed that mVps18 not only interacted with Syntaxin (Syn)7, vesicle-associated membrane protein 8, and Vti1-b but also with Syn13, Syn6, and the Sec1/Munc18 protein mVps45, which catalyze early endosomal fusion events. Moreover, anti-mVps18 antibodies inhibited early endosome fusion in vitro. Mammalian mVps18 also associated with mVam2 and mVam6 as well as with the microtubule-associated Hook1 protein, an orthologue of the Drosophila Hook protein involved in endosome biogenesis. Using in vitro binding and immunofluorescence experiments, we found that mVam2 and mVam6 also associated with microtubules, whereas mVps18, mVps16, and mVps11 associated with actin filaments. These data indicate that the late Vps proteins function during multiple soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated fusion events throughout the endocytic pathway and that their activity may be coordinated with cytoskeletal function.


2019 ◽  
Vol 11 (9) ◽  
pp. 736-746 ◽  
Author(s):  
Rosalba D’Alessandro ◽  
Jacopo Meldolesi

AbstractThe fusion by exocytosis of many vesicles to the plasma membrane induces the discharge to the extracellular space of their abundant luminal cargoes. Other exocytic vesicles, however, do not contain cargoes, and thus, their fusion is not followed by secretion. Therefore, two distinct processes of exocytosis exist, one secretory and the other non-secretory. The present review deals with the knowledge of non-secretory exocytosis developed during recent years. Among such developments are the dual generation of the exocytic vesicles, initially released either from the trans-Golgi network or by endocytosis; their traffic with activation of receptors, channels, pumps, and transporters; the identification of their tethering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complexes that govern membrane fusions; the growth of axons and the membrane repair. Examples of potential relevance of these processes for pathology and medicine are also reported. The developments presented here offer interesting chances for future progress in the field.


2000 ◽  
Vol 11 (7) ◽  
pp. 2251-2265 ◽  
Author(s):  
Diane C. Bassham ◽  
Anton A. Sanderfoot ◽  
Valentina Kovaleva ◽  
Haiyan Zheng ◽  
Natasha V. Raikhel

The Sec1p family of proteins are thought to be involved in the regulation of vesicle fusion reactions through interaction with t-SNAREs (target soluble N-ethylmaleimide–sensitive factor attachment protein receptors) at the target membrane. AtVPS45 is a member of this family from Arabidopsis thaliana that we now demonstrate to be present on the trans-Golgi network (TGN), where it colocalizes with the vacuolar cargo receptor AtELP. Unlike yeast Vps45p, AtVPS45 does not interact with, or colocalize with, the prevacuolar t-SNARE AtPEP12. Instead, AtVPS45 interacts with two t-SNAREs, AtTLG2a and AtTLG2b, that show similarity to the yeast t-SNARE Tlg2p. AtTLG2a and -b each colocalize with AtVPS45 at the TGN; however, AtTLG2a is in a different region of the TGN than AtTLG2b by immunogold electron microscopy. Therefore, we propose that complexes containing AtVPS45 and either AtTLG2a or -b define functional subdomains of the TGN and may be required for different trafficking events. Among other Arabidopsis SNAREs, AtVPS45 antibodies preferentially coprecipitate AtVTI1b over the closely related isoform AtVTI1a, implying that AtVTI1a and AtVTI1b also have distinct functions within the cell. These data point to a functional complexity within the plant secretory pathway, where proteins encoded by gene families have specialized functions, rather than functional redundancy.


2017 ◽  
Vol 474 (19) ◽  
pp. 3339-3354 ◽  
Author(s):  
Matthew Grant Arnold ◽  
Pratikshya Adhikari ◽  
Baobin Kang ◽  
Hao Xu (徐昊)

Sec1–Munc18 (SM) proteins co-operate with SNAREs {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein] receptors} to mediate membrane fusion in eukaryotic cells. Studies of Munc18a/Munc18-1/Stxbp1 in neurotransmission suggest that SM proteins accelerate fusion kinetics primarily by activating the partially zippered trans-SNARE complex. However, accumulating evidence has argued for additional roles for SM proteins in earlier steps in the fusion cascade. Here, we investigate the function of Munc18a in reconstituted exocytic reactions mediated by neuronal and non-neuronal SNAREs. We show that Munc18a plays a direct role in promoting proteoliposome clustering, underlying vesicle docking during exocytosis. In the three different fusion reactions examined, Munc18a-dependent clustering requires an intact N-terminal peptide (N-peptide) motif in syntaxin that mediates the binary interaction between syntaxin and Munc18a. Importantly, clustering is preserved under inhibitory conditions that abolish both trans-SNARE complex formation and lipid mixing, indicating that Munc18a promotes membrane clustering in a step that is independent of trans-SNARE zippering and activation.


2000 ◽  
Vol 148 (2) ◽  
pp. 247-252 ◽  
Author(s):  
Bin Yang ◽  
Martin Steegmaier ◽  
Lino C. Gonzalez ◽  
Richard H. Scheller

The Sec1 family of proteins is proposed to function in vesicle trafficking by forming complexes with target membrane SNAREs (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors) of the syntaxin family. Here, we demonstrate, by using in vitro binding assays, nondenaturing gel electrophoresis, and specific neurotoxin treatment, that the interaction of syntaxin1A with the core SNARE components, SNAP-25 (synaptosome-associated protein of 25 kD) and VAMP2 (vesicle-associated membrane protein 2), precludes the interaction with nSec1 (also called Munc18 and rbSec1). Inversely, association of nSec1 and syntaxin1A prevents assembly of the ternary SNARE complex. Furthermore, using chemical cross-linking of rat brain membranes, we identified nSec1 complexes containing syntaxin1A, but not SNAP-25 or VAMP2. These results support the hypothesis that Sec1 proteins function as syntaxin chaperons during vesicle docking, priming, and membrane fusion.


2006 ◽  
Vol 290 (1) ◽  
pp. C11-C26 ◽  
Author(s):  
Elizabeth Sztul ◽  
Vladimir Lupashin

Coiled-coil and multisubunit tethers have emerged as key regulators of membrane traffic and organellar architecture. The restricted subcellular localization of tethers and their ability to interact with Rabs and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) suggests that tethers participate in determining the specificity of membrane fusion. An accepted model of tether function considers them molecular “bridges” that link opposing membranes before SNARE pairing. This model has been extended by findings in various experimental systems, suggesting that tethers may have other functions. Recent reports implicate tethers in the assembly of SNARE complexes, cargo selection and transit, cytoskeletal events, and localized attachment of regulatory proteins. A concept of tethers as scaffolding machines that recruit protein components involved in varied cellular responses is emerging. In this model, tethers function as integration switches that simultaneously transmit information to coordinate distinct processes required for membrane traffic.


2020 ◽  
Author(s):  
Benjamin K. Mueller ◽  
Ali I Kaya ◽  
Zack Zurawski ◽  
Yun Young Yim ◽  
Jens Meiler ◽  
...  

AbstractThe mechanisms and regulation of neurotransmitter release is a complex process involving many co-factors and proteins. One critical interaction is the regulation of exocytosis when G-protein βγ (Gβγ) dimers bind to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complex. The complex is comprised of N-ethylmaleimide-sensitive factor attachment protein-25 (SNAP-25), syntaxin 1A, and synaptobrevin. Herein we probe across the entire family of human Gβ and Gγ proteins for residues critical for the interaction with SNARE, by systematically screening peptide sequences for their ability to bind to tSNARE. The coiled-coil region of Gβγ showed high affinity to tSNARE, along with the propeller region of Gβ on the opposite side from the coiled-coil region. Peptides based on Gβ1γ2, shown to have high affinity to SNARE, tSNARE were screened further by alanine scanning to probe for residues critical for binding to tSNARE. Full length Gβ1γ2 and SNARE were docked computationally using Rosetta, to examine the experimentally determined binding sites. Docking converged on two possible sites of interaction using two distinct regions of both Gβ1γ2 and SNARE.


Sign in / Sign up

Export Citation Format

Share Document