Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-alpha export

2000 ◽  
Vol 113 (8) ◽  
pp. 1471-1480 ◽  
Author(s):  
J.K. Hood ◽  
J.M. Casolari ◽  
P.A. Silver

Proteins bearing canonical nuclear localization sequences are imported into the nucleus by the importin/karyopherin-alpha/beta heterodimer. Recycling of the importin-alpha subunit to the cytoplasm requires the action of Cas, a member of the importin-beta superfamily. In the yeast Saccharomyces ceresivisiae, the essential gene CSE1 encodes a Cas homologue that exports the yeast importin-alpha protein Srp1p/Kap60p from the nucleus. In this report, we describe a role for the FXFG nucleoporin Nup2p, and possibly the related Nup1p, in the Cse1p-mediated nuclear export pathway. Yeast cells lacking Nup2p or containing a particular temperature-sensitive mutation in NUP1 accumulate Srp1p in the nucleus. Similarly, Cse1p is displaced from the nuclear rim to the nuclear interior in deltanup2 cells. We do not observe any biochemical interaction between Cse1p and Nup2p. Instead, we find that Nup2p binds directly to Srp1p. We have localized Nup2p to the interior face of the nuclear pore complex, and have shown that its N terminus is sufficient for targeting Nup2p to the pore, as well as for binding to Srp1p. Taken together, these data suggest that Nup2p is an important NPC docking site in the Srp1p export pathway.

1992 ◽  
Vol 119 (4) ◽  
pp. 705-723 ◽  
Author(s):  
S R Wente ◽  
M P Rout ◽  
G Blobel

We have identified a novel family of yeast nuclear pore complex proteins. Three individual members of this family, NUP49, NUP100, and NUP116, have been isolated and then characterized by a combination of molecular genetics and immunolocalization. Employing immunoelectron and immunofluorescence microscopy on yeast cells, we found that the binding of a polyspecific monoclonal antibody recognizing this family was predominantly at the nuclear pore complexes. Furthermore, the tagging of NUP49 with a unique epitope enabled the immunolocalization of this protein to the nuclear pore complex by both fluorescence and electron microscopy. DNA sequence analysis has shown that the amino-terminal regions of NUP49, NUP100, and NUP116 share repeated "GLFG" motifs separated from each other by glutamine, asparagine, serine and threonine rich spacers. All three proteins lack a repetitive domain found in the two precisely described yeast nuclear pore complex proteins. Only NUP49 is essential for cell viability. NUP116-deficient cells grow very slowly and are temperature sensitive, whereas the lack of NUP100 has no detectable phenotype. NUP100 and NUP116 are homologous over their entire lengths. Interestingly, NUP100 and NUP116 are both flanked by a histidine tRNA gene and a transposon element suggesting that they may have arisen by gene duplication. We propose that subfamilies of pore complex proteins can be defined by their characteristic combinations of different modular domains.


2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.


2006 ◽  
Vol 175 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Benjamin L. Timney ◽  
Jaclyn Tetenbaum-Novatt ◽  
Diana S. Agate ◽  
Rosemary Williams ◽  
Wenzhu Zhang ◽  
...  

Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump–leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.


2001 ◽  
Vol 152 (1) ◽  
pp. 141-156 ◽  
Author(s):  
Ben E. Black ◽  
James M. Holaska ◽  
Lyne Lévesque ◽  
Batool Ossareh-Nazari ◽  
Carol Gwizdek ◽  
...  

Soluble factors are required to mediate nuclear export of protein and RNA through the nuclear pore complex (NPC). These soluble factors include receptors that bind directly to the transport substrate and regulators that determine the assembly state of receptor–substrate complexes. We recently reported the identification of NXT1, an NTF2-related export factor that stimulates nuclear protein export in permeabilized cells and undergoes nucleocytoplasmic shuttling in vivo (Black, B.E., L. Lévesque, J.M. Holaska, T.C. Wood, and B.M. Paschal. 1999. Mol. Cell. Biol. 19:8616–8624). Here, we describe the molecular characterization of NXT1 in the context of the Crm1-dependent export pathway. We find that NXT1 binds directly to Crm1, and that the interaction is sensitive to the presence of Ran-GTP. Moreover, mutations in NXT1 that reduce binding to Crm1 inhibit the activity of NXT1 in nuclear export assays. We show that recombinant Crm1 and Ran are sufficient to reconstitute nuclear translocation of a Rev reporter protein from the nucleolus to an antibody accessible site on the cytoplasmic side of the NPC. Further progress on the export pathway, including the terminal step of Crm1 and Rev reporter protein release, requires NXT1. We propose that NXT1 engages with the export complex in the nucleoplasm, and that it facilitates delivery of the export complex to a site on the cytoplasmic side of NPC where the receptor and substrate are released into the cytoplasm.


1997 ◽  
Vol 7 (10) ◽  
pp. 767-775 ◽  
Author(s):  
Megan Neville ◽  
Francoise Stutz ◽  
Linda Lee ◽  
Laura I Davis ◽  
Michael Rosbash

2013 ◽  
Vol 24 (24) ◽  
pp. 3920-3938 ◽  
Author(s):  
Mario Niepel ◽  
Kelly R. Molloy ◽  
Rosemary Williams ◽  
Julia C. Farr ◽  
Anne C. Meinema ◽  
...  

The basket of the nuclear pore complex (NPC) is generally depicted as a discrete structure of eight protein filaments that protrude into the nucleoplasm and converge in a ring distal to the NPC. We show that the yeast proteins Mlp1p and Mlp2p are necessary components of the nuclear basket and that they also embed the NPC within a dynamic protein network, whose extended interactome includes the spindle organizer, silencing factors, the proteasome, and key components of messenger ribonucleoproteins (mRNPs). Ultrastructural observations indicate that the basket reduces chromatin crowding around the central transporter of the NPC and might function as a docking site for mRNP during nuclear export. In addition, we show that the Mlps contribute to NPC positioning, nuclear stability, and nuclear envelope morphology. Our results suggest that the Mlps are multifunctional proteins linking the nuclear transport channel to multiple macromolecular complexes involved in the regulation of gene expression and chromatin maintenance.


1994 ◽  
Vol 127 (2) ◽  
pp. 319-332 ◽  
Author(s):  
A M Bogerd ◽  
J A Hoffman ◽  
D C Amberg ◽  
G R Fink ◽  
L I Davis

The NUP1 gene of Saccharomyces cerevisiae encodes one member of a family of nuclear pore complex proteins (nucleoporins) conserved from yeast to vertebrates. We have used mutational analysis to investigate the function of Nup1p. Deletion of either the amino- or carboxy-terminal domain confers a lethal phenotype, but partial truncations at either end affect growth to varying extents. Amino-terminal truncation causes mislocalization and degradation of the mutant protein, suggesting that this domain is required for targeting Nup1p to the nuclear pore complex. Carboxy-terminal mutants are stable but do not have wild-type function, and confer a temperature sensitive phenotype. Both import of nuclear proteins and export of poly(A) RNA are defective at the nonpermissive temperature. In addition, nup1 mutant cells become multinucleate at all temperatures, a phenotype suggestive of a defect in nuclear migration. Tubulin staining revealed that the mitotic spindle appears to be oriented randomly with respect to the bud, in spite of the presence of apparently normal cytoplasmic microtubules connecting one spindle pole body to the bud tip. EM analysis showed that the nuclear envelope forms long projections extending into the cytoplasm, which appear to have detached from the bulk of the nucleus. Our results suggest that Nup1p may be required to retain the structural integrity between the nuclear envelope and an underlying nuclear scaffold, and that this connection is required to allow reorientation of the nucleus in response to cytoskeletal forces.


1999 ◽  
Vol 145 (4) ◽  
pp. 645-657 ◽  
Author(s):  
Ralph H. Kehlenbach ◽  
Achim Dickmanns ◽  
Angelika Kehlenbach ◽  
Tinglu Guan ◽  
Larry Gerace

We recently developed an assay in which nuclear export of the shuttling transcription factor NFAT (nuclear factor of activated T cells) can be reconstituted in permeabilized cells with the GTPase Ran and the nuclear export receptor CRM1. We have now used this assay to identify another export factor. After preincubation of permeabilized cells with a Ran mutant that cannot hydrolyze GTP (RanQ69L), cytosol supports NFAT export, but CRM1 and Ran alone do not. The RanQ69L preincubation leads to accumulation of CRM1 at the cytoplasmic periphery of the nuclear pore complex (NPC) in association with the p62 complex and Can/Nup214. RanGTP-dependent association of CRM1 with these nucleoporins was reconstituted in vitro. By biochemical fractionation and reconstitution, we showed that RanBP1 restores nuclear export after the RanQ69L preincubation. It also stimulates nuclear export in cells that have not been preincubated with RanQ69L. RanBP1 as well as Ran-binding domains of the cytoplasmic nucleoporin RanBP2 promote the release of CRM1 from the NPC. Taken together, our results indicate that RanGTP is important for the targeting of export complexes to the cytoplasmic side of the NPC and that RanBP1 and probably RanBP2 are involved in the dissociation of nuclear export complexes from the NPC in a terminal step of transport.


1995 ◽  
Vol 131 (6) ◽  
pp. 1699-1713 ◽  
Author(s):  
M K Iovine ◽  
J L Watkins ◽  
S R Wente

Nup116p is a member of a family of five yeast nuclear pore complex (NPC) proteins that share an amino terminal region of repetitive tetrapeptide "GLFG" motifs. Previous experiments characterized the unique morphological perturbations that occur in a nup116 null mutant: temperature-sensitive formation of nuclear envelope seals over the cytoplasmic face of the NPC (Wente, S. R., and G. Blobel. 1993. J. Cell Biol. 123:275-284). Three approaches have been taken to dissect the structural basis for Nup116p's role in NPC function. First, deletion mutagenesis analysis of NUP116 revealed that the GLFG region was required for NPC function. This was not true for the other four yeast GLFG family members (Nup49p, Nup57p, Nup100p, and Nup145p). Moreover, deletion of either half of Nup116p's GLFG repeats or replacement of Nup116p's GLFG region with either Nup100p's GLFG region or Nsp1p's FXFG repetitive region abolishes the function of Nup116p. At a semipermissive growth temperature, the cells lacking Nup116p's GLFG region displayed a diminished capacity for nuclear import. Second, overexpression of Nup116p's GLFG region severely inhibited cell growth, rapidly blocked polyadenylated-RNA export, and fragmented the nucleolus. Although it inhibited nuclear export, the overexpressed GLFG region appeared predominantly localized in the cytoplasm and NPC/nuclear envelope structure was not perturbed in thin section electron micrographs. Finally, using biochemical and two-hybrid analysis, an interaction was characterized between Nup116p's GLFG region and Kap95p, an essential yeast homologue of the vertebrate nuclear import factor p97/Imp90/karopherin beta. These data show that Nup116p's GLFG region has an essential role in mediating nuclear transport.


Sign in / Sign up

Export Citation Format

Share Document