Tying the knot: linking cytokinesis to the nuclear cycle

2000 ◽  
Vol 113 (9) ◽  
pp. 1503-1513 ◽  
Author(s):  
M.K. Balasubramanian ◽  
D. McCollum ◽  
U. Surana

For the survival of both the parent and the progeny, it is imperative that the process of their physical division (cytokinesis) be precisely coordinated with progression through the mitotic cell cycle. Recent studies in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe are beginning to unravel the nature of the links between cytokinesis and the nuclear division cycle. The cyclin-dependent kinases and a novel surveillance mechanism that monitors cytokinesis and/or morphogenesis appear to play important regulatory roles in forging these links. It is becoming increasingly clear that the inactivation of the mitosis-promoting cyclin-dependent kinase, which marks the completion of the nuclear division cycle, is essential for actomyosin ring constriction and division septum assembly in both yeasts. Additionally, the spindle pole bodies are emerging as important transient locale for proteins that might play a key role in coupling the completion of mitosis to the onset of cytokinesis.

1977 ◽  
Vol 24 (1) ◽  
pp. 81-93
Author(s):  
C.N. Gordon

Chromatin behaviour during the cell division cycle of the yeast Saccharomyces cerevisiae has been investigated in cells which have been depleted of 90% of their RNA by digestion with ribonuclease. Removal of large amounts of RNA from the yeast nucleus before treatment of the cells with heavy metal fixatives and stains permits chromatin to be visualized with extreme clarity in thin sections of cells processed for electron microscopy by conventional procedures. Spindle pole bodies were also visualized by this treatment, although the associated microtubules were not. Chromatin is dispersed during interphase and occupies the non-nucleolar region of the nucleus which is known to be Feulgen-positive from light microscopy. Because spindle microtubules are not visualized, direct attachment of microtubules to chromatin fibrils could not be verified. However, chromatin was not attached directly to the spindle pole bodies and kinetochore differentiations were not observed in the nucleoplasm. During nuclear division chromatin remains dispersed and does not condense into discrete chromatids. As the nucleus expands into the bud, chromosomal distribution to the daughter cells is thought to result from the separation of the poles of the spindle apparatus with attached chromatin fibrils. However, that such distribution is occurring as the nucleus elongates is not obvious until an advanced stage of nuclear division is reached and partition of the nucleus is nearly complete. Thus, no aggregation of chromatin into metaphase or anaphase plates occurs and the appearance of chromatin during mitosis is essentially the same as in interphase. These observations indicate that the marked changes in the topological structure of chromatin which characterize mitosis in the higher eukaryotes do not occur in S. cerevisiae.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 29-43 ◽  
Author(s):  
E O Shuster ◽  
B Byers

Abstract Mutations in the Start class of cell division cycle genes (CDC28, CDC36 and CDC39) define the point in the G1 phase of the vegetative cycle at which the cell becomes committed to completing another round of cell division. Genetic, cytological and biochemical data demonstrate that these mutations cause meiotic cells to become arrested at pachytene following completion of both chromosomal DNA replication and spindle pole body (SPB) duplication. In contrast these mutations have previously been found to cause arrest of the mitotic cell cycle prior to either of these landmark events, so the role of the Start genes in these events during vegetative growth must be indirect. Our observations are consistent with the hypothesis that CDC28, CDC36 and CDC39 are required for irreversible commitment to nuclear division in both the mitotic and meiotic pathways. CDC28 was additionally found to be required for the SPB separation that precedes spindle formation in preparation for the second meiotic division. Cytological and genetic analyses of this requirement revealed both that such separation may fail independently at either SPB and that ascospore formation can proceed independently of SPB separation.


1992 ◽  
Vol 3 (7) ◽  
pp. 805-818 ◽  
Author(s):  
I Fitch ◽  
C Dahmann ◽  
U Surana ◽  
A Amon ◽  
K Nasmyth ◽  
...  

The previously described CLB1 and CLB2 genes encode a closely related pair of B-type cyclins. Here we present the sequences of another related pair of B-type cyclin genes, which we term CLB3 and CLB4. Although CLB1 and CLB2 mRNAs rise in abundance at the time of nuclear division, CLB3 and CLB4 are turned on earlier, rising early in S phase and declining near the end of nuclear division. When all possible single and multiple deletion mutants were constructed, some multiple mutations were lethal, whereas all single mutants were viable. All lethal combinations included the clb2 deletion, whereas the clb1 clb3 clb4 triple mutant was viable, suggesting a key role for CLB2. The inviable multiple clb mutants appeared to have a defect in mitosis. Conditional clb mutants arrested as large budded cells with a G2 DNA content but without any mitotic spindle. Electron microscopy showed that the spindle pole bodies had duplicated but not separated, and no spindle had formed. This suggests that the Clb/Cdc28 kinase may have a relatively direct role in spindle formation. The two groups of Clbs may have distinct roles in spindle formation and elongation.


2011 ◽  
Vol 192 (4) ◽  
pp. 599-614 ◽  
Author(s):  
Mauricio Valerio-Santiago ◽  
Fernando Monje-Casas

The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit.


1999 ◽  
Vol 112 (14) ◽  
pp. 2313-2321 ◽  
Author(s):  
L. Cerutti ◽  
V. Simanis

In the fission yeast Schizosaccharomyces pombe, the onset of septum formation is induced by a signal transduction network involving several protein kinases and a GTPase switch. One of the roles of the spg1p GTPase is to localise the cdc7p protein kinase to the poles of the mitotic spindle, from where the onset of septation is thought to be signalled at the end of mitosis. Immunofluorescence studies have shown that cdc7p is located on both spindle pole bodies early in mitosis, but only on one during the later stages of anaphase. This is mediated by inactivation of spg1p on one pole before the other. The GAP for spg1p is a complex of two proteins, cdc16p and byr4p. Localisation of cdc16p and byr4p by indirect immunofluorescence during the mitotic cell cycle showed that both proteins are present on the spindle pole body in interphase cells. During mitosis, byr4p is seen first on both poles of the spindle, then on only one. This occurs prior to cdc7p becoming asymmetric. In contrast, the signal due to cdc16p decreases to a low level during early mitosis, before being seen strongly on the same pole as byr4p. Double staining indicates that this is the opposite pole to that which retains cdc7p in late anaphase. Examination of the effect of inactivating cdc16p at various stages of the cell cycle suggests that cdc16p, together with cdc2p plays a role in restraining septum formation during interphase. The asymmetric inactivation of spg1p is mediated by recruitment of the cdc16p-byr4p GAP to one of the poles of the spindle before the other, and the asymmetry of the spindle pole bodies may be established early during mitosis. Moreover, the spindle pole bodies appear to be non-equivalent even after division has been completed.


1990 ◽  
Vol 10 (12) ◽  
pp. 6356-6361
Author(s):  
M A Drebot ◽  
L M Veinot-Drebot ◽  
R A Singer ◽  
G C Johnston

In the cell cycle of the budding yeast Saccharomyces cerevisiae, expression of the histone genes H2A and H2B of the TRT1 and TRT2 loci is regulated by the performance of "start," the step that also regulates the cell cycle. Here we show that histone production is also subject to an additional form of regulation that is unrelated to the mitotic cell cycle. Expression of histone genes, as assessed by Northern (RNA) analysis, was shown to increase promptly after the stimulation, brought about by fresh medium, that activates stationary-phase cells to reenter the mitotic cell cycle. The use of a yeast mutant that is conditionally blocked in the resumption of proliferation at a step that is not part of the mitotic cell cycle (M.A. Drebot, G.C. Johnston, and R.A. Singer, Proc. Natl. Acad. Sci. 84:7948, 1987) showed that this increased gene expression that occurs upon stimulation of stationary-phase cells took place in the absence of DNA synthesis and without the performance of start. This stimulation-specific gene expression was blocked by the mating pheromone alpha-factor, indicating that alpha-factor directly inhibits expression of these histone genes, independently of start.


1992 ◽  
Vol 3 (12) ◽  
pp. 1443-1454 ◽  
Author(s):  
J T McGrew ◽  
L Goetsch ◽  
B Byers ◽  
P Baum

Mutations in the ESP1 gene of Saccharomyces cerevisiae disrupt normal cell-cycle control and cause many cells in a mutant population to accumulate extra spindle pole bodies. To determine the stage at which the esp1 gene product becomes essential for normal cell-cycle progression, synchronous cultures of ESP1 mutant cells were exposed to the nonpermissive temperature for various periods of time. The mutant cells retained viability until the onset of mitosis, when their viability dropped markedly. Examination of these cells by fluorescence and electron microscopy showed the first detectable defect to be a structural failure in the spindle. Additionally, flow cytometric analysis of DNA content demonstrated that massive chromosome missegregation accompanied this failure of spindle function. Cytokinesis occurred despite the aberrant nuclear division, which often resulted in segregation of both spindle poles to the same cell. At later times, the missegregated spindle pole bodies entered a new cycle of duplication, thereby leading to the accumulation of extra spindle pole bodies within a single nucleus. The DNA sequence predicts a protein product similar to those of two other genes that are also required for nuclear division: the cut1 gene of Schizosaccharomyces pombe and the bimB gene of Aspergillus nidulans.


1979 ◽  
Vol 57 (18) ◽  
pp. 1860-1872 ◽  
Author(s):  
Diane Cope Peabody ◽  
Jerome J. Motta

Meiosis I in isolates of Armillaria mellea in which subhymenial hyphae are uninucleate and lack clamp connections was examined ultrastructurally. Although the overall pattern of development and basidiosporogenesis appears similar to other Homobasidiomycetes it was observed that spindle pole bodies are predominantly monoglobular and are associated with a unique membrane structure of the subtending nuclear envelope. The nuclear envelope also disappears at metaphase I and reforms by the coalescence of membrane fragments around the compacted chromatin at late telophase I. The significance of these features in relation to other Basidiomycetes is briefly discussed.


1994 ◽  
Vol 125 (4) ◽  
pp. 853-866 ◽  
Author(s):  
M A Osborne ◽  
G Schlenstedt ◽  
T Jinks ◽  
P A Silver

The NUF2 gene of the yeast Saccharomyces cerevisiae encodes an essential 53-kd protein with a high content of potential coiled-coil structure similar to myosin. Nuf2 is associated with the spindle pole body (SPB) as determined by coimmunofluorescence with known SPB proteins. Nuf2 appears to be localized to the intranuclear region and is a candidate for a protein involved in SPB separation. The nuclear association of Nuf2 can be disrupted, in part, by 1 M salt but not by the detergent Triton X-100. All Nuf2 can be removed from nuclei by 8 M urea extraction. In this regard, Nuf2 is similar to other SPB-associated proteins including Nufl/SPC110, also a coiled-coil protein. Temperature-sensitive alleles of NUF2 were generated within the coiled-coil region of Nuf2 and such NUF2 mutant cells rapidly arrest after temperature shift with a single undivided or partially divided nucleus in the bud neck, a shortened mitotic spindle and their DNA fully replicated. In sum, Nuf2 is a protein associated with the SPB that is critical for nuclear division. Anti-Nuf2 antibodies also recognize a mammalian 73-kd protein and display centrosome staining of mammalian tissue culture cells suggesting the presence of a protein with similar function.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 647-659
Author(s):  
Kochung Tsui ◽  
Lee Simon ◽  
David Norris

The yeast Saccharomyces cerevisiae contains two genes for histone H2A and two for histone H2B located in two divergently transcribed gene pairs: HTA1-HTB1 and HTA2-HTB2. Diploid strains lacking HTA1-HTB1 (hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2) grow vegetatively, but will not sporulate. This sporulation phenotype results from a partial depletion of H2A-H2B dimers. Since the expression patterns of HTA1-HTB1 and HTA2-HTB2 are similar in mitosis and meiosis, the sporulation pathway is therefore more sensitive than the mitotic cycle to depletion of H2A-H2B dimers. After completing premeiotic DNA replication, commitment to meiotic recombination, and chiasma resolution, the hta1-htb1Δ/hta1-htb1Δ, HTA2-HTB2/HTA2-HTB2 mutant arrests before the first meiotic division. The arrest is not due to any obvious disruptions in spindle pole bodies or microtubules. The meiotic block is not bypassed in backgrounds homozygous for spo13, rad50Δ, or rad9Δ mutations, but is bypassed in the presence of hydroxyurea, a drug known to inhibit DNA chain elongation. We hypothesize that the deposition of H2A-H2B dimers in the mutant is unable to keep pace with the replication fork, thereby leading to a disruption in chromosome structure that interferes with the meiotic divisions.


Sign in / Sign up

Export Citation Format

Share Document