Correction of delF508-CFTR activity with benzo(c)quinolizinium compounds through facilitation of its processing in cystic fibrosis airway cells

2001 ◽  
Vol 114 (22) ◽  
pp. 4073-4081
Author(s):  
Robert L. Dormer ◽  
Renaud Dérand ◽  
Ceinwen M. McNeilly ◽  
Yvette Mettey ◽  
Laurence Bulteau-Pignoux ◽  
...  

A number of genetic diseases, including cystic fibrosis, have been identified as disorders of protein trafficking associated with retention of mutant protein within the endoplasmic reticulum. In the presence of the benzo(c)quinolizinium drugs, MPB-07 and its congener MPB-91, we show the activation of cystic fibrosis transmembrane conductance regulator (CFTR) delF508 channels in IB3-1 human cells, which express endogenous levels of delF508-CFTR. These drugs were without effect on the Ca2+-activated Cl– transport, whereas the swelling-activated Cl– transport was found altered in MPB-treated cells. Immunoprecipitation and in vitro phosphorylation shows a 20% increase of the band C form of delF508 after MPB treatment. We then investigated the effect of these drugs on the extent of mislocalisation of delF508-CFTR in native airway cells from cystic fibrosis patients. We first showed that delF508 CFTR was characteristically restricted to an endoplasmic reticulum location in approximately 80% of untreated cells from CF patients homozygous for the delF508-CFTR mutation. By contrast, 60-70% of cells from non-CF patients showed wild-type CFTR in an apical location. MPB-07 treatment caused dramatic relocation of delF508-CFTR to the apical region such that the majority of delF508/delF508 CF cells showed a similar CFTR location to that of wild-type. MPB-07 had no apparent effect on the distribution of wild-type CFTR, the apical membrane protein CD59 or the ER membrane Ca2+,Mg-ATPase. We also showed a similar pharmacological effect in nasal cells freshly isolated from a delF508/G551D CF patient. The results demonstrate selective redirection of a mutant membrane protein using cell-permeant small molecules of the benzo(c)quinolizinium family and provide a major advance towards development of a targetted drug treatment for cystic fibrosis and other disorders of protein trafficking.

1994 ◽  
Vol 301 (2) ◽  
pp. 577-583 ◽  
Author(s):  
K Oda ◽  
J Cheng ◽  
T Saku ◽  
N Takami ◽  
M Sohda ◽  
...  

Placental alkaline phosphatase (PLAP) is initially synthesized as a precursor (proPLAP) with a C-terminal extension. We constructed a recombinant cDNA which encodes a chimeric protein (alpha GL-PLAP) comprising rat alpha 2u-globulin (alpha GL) and the C-terminal extension of PLAP. Two molecular species (25 kDa and 22 kDa) were expressed in the COS-1 cell transfected with the cDNA for alpha GL-PLAP. Only the 22 kDa form was labelled with both [3H]stearic acid and [3H]ethanolamine. Upon digestion with phosphatidylinositol-specific phospholipase C the 22 kDa form was released into the medium, indicating that this form is anchored on the cell surface via glycosylphosphatidylinositol (GPI). A specific IgG raised against a C-terminal nonapeptide of proPLAP precipitated the 25 kDa form but not the 22 kDa form, suggesting that the 25 kDa form is a precursor retaining the C-terminal propeptide. When a mutant alpha GL-PLAP, in which the aspartic acid residue is replaced with tryptophan at a putative cleavage/attachment site, was expressed in COS-1 cells, the 25 kDa precursor was the only form found inside the cell and retained in the endoplasmic reticulum, as judged by immunofluorescence microscopy. In vitro translation programmed with mRNAs coding for the wild-type and mutant forms of alpha GL-PLAP demonstrated that the C-terminal propeptide was cleaved from the wild-type chimeric protein, but not from the mutant one. This gave rise to the 22 kDa form attached with a GPI anchor, suggesting that GPI is covalently linked to the aspartic acid residue (Asp159) of alpha GL-PLAP. Taken together, these results indicate that the C-terminal propeptide of PLAP functions as a signal to render alpha GL a GPI-linked membrane protein in vitro and in vivo in cultured cells, and that the chimeric protein constructed in this study may be useful for elucidating the mechanism underlying the cleavage of the propeptide and attachment of GPI, which occur in the endoplasmic reticulum.


1983 ◽  
Vol 3 (8) ◽  
pp. 1362-1370 ◽  
Author(s):  
H. Bussey ◽  
D. Saville ◽  
D. Greene ◽  
D. J. Tipper ◽  
K. A. Bostian

Killer toxin secretion was blocked at the restrictive temperature inSaccharomyces cerevisiae secmutants with conditional defects in theS. cerevisiaesecretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in allsecmutants at the restrictive temperature. Insec18the protoxin was stable after a chase; but insec7andsec1the protoxin was unstable, and insec111K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and insec7andsec1cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined twokexmutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable inkex1but unstable inkex2. Protoxin stability inkex1 kex2double mutants indicated the orderkex1→kex2in the protoxin processing pathway. TPCK did not block protoxin instability inkex2mutants. This suggested that theKEX1- andKEX2-dependent steps preceded thesec7Golgi block. We attempted to localize the protoxin inS. cerevisiaecells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


1972 ◽  
Vol 52 (2) ◽  
pp. 231-245 ◽  
Author(s):  
Colvin M. Redman ◽  
M. George Cherian

These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.


2006 ◽  
Vol 395 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Tip W. Loo ◽  
M. Claire Bartlett ◽  
Ying Wang ◽  
David M. Clarke

Most patients with CF (cystic fibrosis) express a CFTR [CF TM (transmembrane) conductance regulator] processing mutant that is not trafficked to the cell surface because it is retained in the endoplasmic reticulum due to altered packing of the TM segments. CL4 (cytoplasmic loop 4) connecting TMs 10 and 11 is a ‘hot-spot’ for CFTR processing mutations. The chemical chaperone CFcor-325 (4-cyclohexyloxy-2-{1-[4-(4-methoxy-benezenesulphonyl)piperazin-1-yl]-ethyl}-quinazoline) rescued most CL4 mutants. To test if CFcor-325 promoted correct folding of the TMDs (TM domains), we selected two of the CL4 mutants (Q1071P and H1085R) for disulphide cross-linking analysis. Pairs of cysteine residues that were cross-linked in mature wild-type CFTR were introduced into mutants Q1071P and H1085R. The cross-linking patterns of the Q1071P or H1085R double cysteine mutants rescued with CFcor-325 were similar to those observed with mature wild-type double cysteine proteins. These results show that CFcor-325 rescued CFTR mutants by repairing the folding defects in the TMDs.


1995 ◽  
Vol 268 (2) ◽  
pp. C297-C307 ◽  
Author(s):  
S. N. Smith ◽  
D. M. Steel ◽  
P. G. Middleton ◽  
F. M. Munkonge ◽  
D. M. Geddes ◽  
...  

Two important issues that can be addressed by animal models are disease pathogenesis and the testing of new treatments, including gene therapy. How closely these models mimic the relevant disorder in humans will determine their usefulness. This study examines how closely the characteristic bioelectric features of cystic fibrosis (CF) are reproduced in the airways and intestinal tract of the exon 10 insertional mutant mouse (cf/cf). In agreement with CF subjects these cf/cf mutant mice demonstrate the following: 1) reduced adenosine 3',5'-cyclic monophosphate-related chloride secretion throughout the respiratory and intestinal tracts both in vivo and in vitro, 2) calcium-related chloride secretion that is preserved in the airways but reduced in the intestine, and 3) a more negative nasal potential difference and increased amiloride response compared with wild-type animals, likely to relate to increased sodium absorption. In contrast to humans, sodium absorption is not increased in the small intestine and is reduced in the trachea of the cf/cf mice. We conclude that the majority of the salient electrophysiological features of CF required for studies of pathogenesis or testing of new treatments are present in these cf/cf mice.


2020 ◽  
Vol 6 (47) ◽  
pp. eabc5911
Author(s):  
Anindit Mukherjee ◽  
Kelvin D. MacDonald ◽  
Jeonghwan Kim ◽  
Michael I. Henderson ◽  
Yulia Eygeris ◽  
...  

Cystic fibrosis (CF) results from mutations in the chloride-conducting CF transmembrane conductance regulator (CFTR) gene. Airway dehydration and impaired mucociliary clearance in CF is proposed to result in tonic epithelial sodium channel (ENaC) activity, which drives amiloride-sensitive electrogenic sodium absorption. Decreasing sodium absorption by inhibiting ENaC can reverse airway surface liquid dehydration. Here, we inhibit endogenous heterotrimeric ENaC channels by introducing inactivating mutant ENaC α mRNA (αmutENaC). Lipid nanoparticles carrying αmutENaC were transfected in CF-based airway cells in vitro and in vivo. We observed a significant decrease in macroscopic as well as amiloride-sensitive ENaC currents and an increase in airway surface liquid height in CF airway cells. Similarly, intranasal transfection of αmutENaC mRNA decreased amiloride-sensitive nasal potential difference in CFTRKO mice. These data suggest that mRNA-based ENaC inhibition is a powerful strategy for reducing mucus dehydration and has therapeutic potential for treating CF in all patients, independent of genotype.


2020 ◽  
Vol 19 (5) ◽  
pp. 752-761
Author(s):  
Rachael E. Rayner ◽  
Jack Wellmerling ◽  
Wissam Osman ◽  
Sean Honesty ◽  
Maria Alfaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document