Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity duringDictyosteliumchemotaxis

2002 ◽  
Vol 115 (8) ◽  
pp. 1733-1747 ◽  
Author(s):  
Hui Zhang ◽  
Deborah Wessels ◽  
Petra Fey ◽  
Karla Daniels ◽  
Rex L. Chisholm ◽  
...  

The myosin regulatory light chain (RLC) of Dictyostelium discoideum is phosphorylated at a single serine site in response to chemoattractant. To investigate the role of the phosphorylation of RLC in both motility and chemotaxis, mutants were generated in which the single phosphorylatable serine was replaced with a nonphosphorylatable alanine. Several independent clones expressing the mutant RLC in the RLC null mutant, mlcR-, were obtained. These S13A mutants were subjected to high resolution computer-assisted motion analysis to assess the basic motile behavior of cells in the absence of a chemotatic signal, and the chemotactic responsiveness of cells to the spatial, temporal and concentration components of natural cAMP waves. In the absence of a cAMP signal, mutant cells formed lateral pseudopods less frequently and crawled faster than wild-type cells. In a spatial gradient of cAMP, mutant cells chemotaxed more efficiently than wild-type cells. In the front of simulated temporal and natural waves of cAMP,mutant cells responded normally by suppressing lateral pseudopod formation. However, unlike wild-type cells, mutant cells did not lose cellular polarity at the peak and in the back of either wave. Since depolarization at the peak and in the descending phase of the natural wave is necessary for efficient chemotaxis, this deficiency resulted in a decrease in the capacity of S13A mutant cells to track natural cAMP waves relayed by wild-type cells, and in the fragmentation of streams late in mutant cell aggregation. These results reveal a regulatory pathway induced by the peak and back of the chemotactic wave that alters RLC phosphorylation and leads to cellular depolarization. We suggest that depolarization requires myosin II rearrangement in the cortex facilitated by RLC phosphorylation, which increases myosin motor function.

1995 ◽  
Vol 108 (3) ◽  
pp. 1105-1115 ◽  
Author(s):  
E. Shelden ◽  
D.A. Knecht

We have used fluorescent labeling, confocal microscopy and computer-assisted motion analysis to observe and quantify individual wild-type and myosin II mutant cell behavior during early multicellular development in Dictyostelium discoideum. When cultured with an excess of unlabeled wild-type cells, labeled control cells are randomly distributed within aggregation streams, while myosin II mutant cells are found primarily at the lateral edges of streams. Wild-type cells move at average rates of 8.5 +/- 4.9 microns/min within aggregation streams and can exhibit regular periodic movement at 3.5 minute intervals; half as long as the 7 minute period reported previously for isolated cells. Myosin II mutants under the same conditions move at 5.0 +/- 4.8 microns/min, twice as fast as reported previously for isolated myosin II mutant cells, and fail to display regular periodic movement. When removed from aggregation streams myosin II mutant cells move at only 2.5 +/- 2.0 microns/min, while wild-type cells under these conditions move at 5.9 +/- 4.5 microns/min. Analysis of cell morphology further reveals that myosin II mutant cells are grossly and dynamically deformed within wild-type aggregation streams but not when removed from streams and examined in isolation. These data reveal that the loss of myosin II has dramatic consequences for cells undergoing multicellular development. The segregation of mutant cells to aggregation stream edges demonstrates that myosin II mutants are unable to penetrate a multicellular mass of wild-type cells, while the observed distortion of myosin II mutant cells suggests that the cortex of such cells is too flacid to resist forces generated during movement. The increased rate of mutant cell movement and distortion of mutant cell morphology seen within wild-type aggregation streams further argues both that movement of wild-type cells within a multicellular mass can generate traction forces on neighboring cells and that mutant cell morphology and behavior can be altered by these forces. In addition, the distortion of myosin II mutant cells within wild-type aggregation streams indicates that myosin is not required for the formation of cell-cell contacts. Finally, the consequences of the loss of myosin II for cells during multicellular development are much more severe than has been previously revealed for isolated cells. The techniques used here to analyze the behavior of individual cells within multicellular aggregates provide a more sensitive assay of mutant cell phenotype than has been previously available and will be generally applicable to the study of motility and cytoskeletal mutants in Dictyostelium.


2000 ◽  
Vol 11 (8) ◽  
pp. 2803-2820 ◽  
Author(s):  
Deborah J. Wessels ◽  
Hui Zhang ◽  
Joshua Reynolds ◽  
Karla Daniels ◽  
Paul Heid ◽  
...  

Dictyostelium strains in which the gene encoding the cytoplasmic cAMP phosphodiesterase RegA is inactivated form small aggregates. This defect was corrected by introducing copies of the wild-type regA gene, indicating that the defect was solely the consequence of the loss of the phosphodiesterase. Using a computer-assisted motion analysis system,regA−mutant cells were found to show little sense of direction during aggregation. When labeled wild-type cells were followed in a field of aggregatingregA−cells, they also failed to move in an orderly direction, indicating that signaling was impaired in mutant cell cultures. However, when labeled regA−cells were followed in a field of aggregating wild-type cells, they again failed to move in an orderly manner, primarily in the deduced fronts of waves, indicating that the chemotactic response was also impaired. Since wild-type cells must assess both the increasing spatial gradient and the increasing temporal gradient of cAMP in the front of a natural wave, the behavior of regA−cells was motion analyzed first in simulated temporal waves in the absence of spatial gradients and then was analyzed in spatial gradients in the absence of temporal waves. Our results demonstrate that RegA is involved neither in assessing the direction of a spatial gradient of cAMP nor in distinguishing between increasing and decreasing temporal gradients of cAMP. However, RegA is essential for specifically suppressing lateral pseudopod formation during the response to an increasing temporal gradient of cAMP, a necessary component of natural chemotaxis. We discuss the possibility that RegA functions in a network that regulates myosin phosphorylation by controlling internal cAMP levels, and, in support of that hypothesis, we demonstrate that myosin II does not localize in a normal manner to the cortex ofregA−cells in an increasing temporal gradient of cAMP.


1999 ◽  
Vol 276 (4) ◽  
pp. H1167-H1171 ◽  
Author(s):  
Scott H. Buck ◽  
Patrick J. Konyn ◽  
Joseph Palermo ◽  
Jeffrey Robbins ◽  
Richard L. Moss

To investigate the role of myosin regulatory light chain isoforms as a determinant of the kinetics of cardiac contraction, unloaded shortening velocity was determined by the slack-test method in skinned wild-type murine atrial cells and transgenic cells expressing ventricular regulatory light chain (MLC2v). Transgenic mice were generated using a 4.5-kb fragment of the murine α-myosin heavy chain promoter to drive high levels of MLC2v expression in the atrium. Velocity of unloaded shortening was determined at 15°C in maximally activating Ca2+ solution (pCa 4.5) containing (in mmol/l) 7 EGTA, 1 free Mg2+, 4 MgATP, 14.5 creatine phosphate, and 20 imidazole (ionic strength 180 mmol/l, pH 7.0). Compared with the wild type ( n = 10), the unloaded shortening velocity of MLC2v-expressing transgenic murine atrial cells ( n = 10) was significantly greater (3.88 ± 1.19 vs. 2.51 ± 1.08 muscle lengths/s, P < 0.05). These results provide evidence that myosin light chain 2 regulates cross-bridge cycling rate. The faster rate of cycling in the presence of MLC2v suggests that the MLC2v isoform may contribute to the greater power-generating capabilities of the ventricle compared with the atrium.


Cell ◽  
2001 ◽  
Vol 107 (5) ◽  
pp. 631-641 ◽  
Author(s):  
Julien S. Davis ◽  
Shahin Hassanzadeh ◽  
Steve Winitsky ◽  
Hua Lin ◽  
Colleen Satorius ◽  
...  

2021 ◽  
pp. 129655
Author(s):  
Lichuang Cao ◽  
Zhenyu Wang ◽  
Dequan Zhang ◽  
Xin Li ◽  
Chengli Hou ◽  
...  

2017 ◽  
Vol 92 ◽  
pp. 810-818 ◽  
Author(s):  
Hua-Shan Li ◽  
Qian Lin ◽  
Jia Wu ◽  
Zhi-Hui Jiang ◽  
Jia-Bi Zhao ◽  
...  

2005 ◽  
Vol 92 (2) ◽  
pp. 349-361 ◽  
Author(s):  
David Amparan ◽  
Dorina Avram ◽  
Christopher G. Thomas ◽  
Michaela G. Lindahl ◽  
Jing Yang ◽  
...  

Vaccine ◽  
2017 ◽  
Vol 35 (4) ◽  
pp. 663-671 ◽  
Author(s):  
Luan C. Henker ◽  
Claiton I. Schwertz ◽  
Neuber J. Lucca ◽  
Manoela M. Piva ◽  
Keila C. Prior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document